Wang Xiurong, Zhang Huaming
Department of Pulmonary and Critical Care Medicine, Wuhan No. 7 Hospital, Heping Avenue No. 978, Wuchang, Wuhan, Hubei, China.
Clinical Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Yanhu Avenue No. 39, Wuchang, Wuhan, Hubei, China.
World J Surg Oncol. 2025 Sep 18;23(1):335. doi: 10.1186/s12957-025-03996-8.
Amino acid metabolic reprogramming has emerged as a pivotal mechanism underlying the pathogenesis of chronic airway diseases and lung cancer. This review comprehensively examines the dynamic regulation and clinical implications of key amino acid pathways-including arginine, glutamine, and tryptophan metabolism-in chronic obstructive pulmonary disease (COPD), asthma, and lung malignancies. Our findings reveal a key difference in metabolic dysregulation between chronic airway diseases and lung cancer: while it drives persistent inflammation, oxidative stress, and tissue damage in chronic conditions, cancer cells exploit these same pathways to support their uncontrolled growth and create an immunosuppressive tumor microenvironment. Crucially, shared metabolic nodes reveal actionable targets for dual-purpose therapeutic strategies. Recent advances demonstrate the translational potential of metabolic interventions. Arginase inhibitors simultaneously improve vascular function in COPD and enhance antitumor immunity, while nanoparticle-delivered glutaminase blockers attenuate pulmonary fibrosis while curbing cancer progression. However, challenges persist in achieving tissue-specific delivery, real-time metabolic monitoring, and overcoming resistance. Future directions should focus on spatiotemporally controlled metabolic modulation and the development of multi-omics-based predictive models to usher in an era of precision metabolic therapy for respiratory disorders.
氨基酸代谢重编程已成为慢性气道疾病和肺癌发病机制的关键机制。本综述全面探讨了慢性阻塞性肺疾病(COPD)、哮喘和肺部恶性肿瘤中关键氨基酸途径(包括精氨酸、谷氨酰胺和色氨酸代谢)的动态调节及其临床意义。我们的研究结果揭示了慢性气道疾病和肺癌在代谢失调方面的关键差异:在慢性疾病中,它会引发持续的炎症、氧化应激和组织损伤,而癌细胞则利用这些相同的途径来支持其不受控制的生长并创造一个免疫抑制性肿瘤微环境。至关重要的是,共享的代谢节点揭示了两用治疗策略的可操作靶点。最近的进展证明了代谢干预的转化潜力。精氨酸酶抑制剂可同时改善COPD患者的血管功能并增强抗肿瘤免疫力,而纳米颗粒递送的谷氨酰胺酶阻滞剂在抑制癌症进展的同时可减轻肺纤维化。然而,在实现组织特异性递送、实时代谢监测和克服耐药性方面仍存在挑战。未来的方向应侧重于时空控制的代谢调节以及基于多组学的预测模型的开发,以开创呼吸系统疾病精准代谢治疗的时代。