Suppr超能文献

解码副肿瘤性视神经脊髓炎:肿瘤驱动的T细胞和B细胞动态变化的多组学研究

Decoding paraneoplastic neuromyelitis optica: a multi-omics investigation of tumor-driven T and B cell dynamics.

作者信息

Huang Wenjing, Lin Ruyu, Zeng Xianyi, Wang Hai, Yan Jichun

机构信息

The First People's Hospital of Qinzhou, Qinzhou, China.

Clinical Medicine, Fujian Medical University, Fujian, China.

出版信息

Front Immunol. 2025 Sep 2;16:1665688. doi: 10.3389/fimmu.2025.1665688. eCollection 2025.

Abstract

A significant subset of Neuromyelitis Optica Spectrum Disorder (NMOSD) cases occurs as a paraneoplastic syndrome, where an underlying tumor triggers a devastating autoimmune attack against the central nervous system. This autoimmune response is driven by pathogenic aquaporin-4 autoantibodies (AQP4-IgG), likely initiated by the tumor's expression of AQP4 in a phenomenon of molecular mimicry. Understanding the precise immune mechanisms that link a patient's cancer to their neurological disease is critical for early diagnosis of the occult malignancy and for improved patient outcomes. This review explores how multi-omics technologies are revolutionizing the investigation of T and B cell functional dynamics in this specific context, offering unprecedented resolution into the pathogenesis of paraneoplastic NMOSD. The application of integrated multi-omics-including genomics, epigenomics, transcriptomics (particularly single-cell RNA-seq), proteomics, and metabolomics-provides a holistic framework to dissect the specific immune response directed against both the tumor and the CNS. Transcriptomics, notably scRNA-seq, can deconstruct the heterogeneity of tumor-infiltrating and circulating T and B cells to identify the pathogenic subsets responsible for the autoimmune pathology. Proteomics can aid in identifying tumor-specific biomarkers, while metabolomics offers insights into the metabolic vulnerabilities of the autoreactive immune cells. Multi-omics analyses reveal the cellular and molecular cascade of the paraneoplastic response. High-throughput T-cell receptor (TCR) and B-cell receptor (BCR) sequencing provides direct evidence of oligoclonal expansions, identifying the specific T and B cell clones that likely recognize shared AQP4 epitopes on both the cancer cells and CNS astrocytes. These expanded B cells show hallmarks of a mature, antigen-driven response, including class-switching and affinity maturation of the pathogenic AQP4-IgG. Furthermore, analyses of T cell dynamics reveal a pro-inflammatory environment, with functional impairment of regulatory T cells (Tregs) and a skewed balance towards Th17 and Th1 cells, which is likely initiated by the tumor and perpetuated in the CNS via critical T-B cell interactions, such as the IFN-I → B-cell → IL-6 → pathogenic Th17 axis. Despite these insights, substantial challenges remain in translating these findings into clinical practice. A key hurdle is using multi-omics to develop a reliable molecular signature that can distinguish paraneoplastic from idiopathic NMOSD at diagnosis, thereby streamlining cancer screening for high-risk patients. Advanced computational tools, including AI and machine learning, are needed to integrate the immense volume of data and identify the subtle differences. Future research must prioritize the analysis of longitudinal samples (before and after tumor treatment) and the functional validation of the identified pathogenic pathways. In conclusion, multi-omics is profoundly enhancing our understanding of how tumors can initiate and sustain a specific, targeted autoimmune response in paraneoplastic NMOSD. This deep mechanistic investigation not only promises to improve diagnostics and personalized therapies for these complex patients but also serves as a powerful model for understanding other paraneoplastic syndromes, ultimately bridging the fields of oncology and neuroimmunology.

摘要

视神经脊髓炎谱系障碍(NMOSD)的一个重要子集表现为副肿瘤综合征,即潜在肿瘤引发针对中枢神经系统的毁灭性自身免疫攻击。这种自身免疫反应由致病性水通道蛋白4自身抗体(AQP4-IgG)驱动,可能是由于肿瘤表达AQP4引发分子模拟现象所致。了解将患者癌症与神经系统疾病联系起来的精确免疫机制,对于隐匿性恶性肿瘤的早期诊断和改善患者预后至关重要。本综述探讨了多组学技术如何在这一特定背景下彻底改变对T细胞和B细胞功能动力学的研究,为副肿瘤性NMOSD的发病机制提供了前所未有的分辨率。整合多组学(包括基因组学、表观基因组学、转录组学(特别是单细胞RNA测序)、蛋白质组学和代谢组学)的应用提供了一个整体框架,以剖析针对肿瘤和中枢神经系统的特异性免疫反应。转录组学,尤其是scRNA-seq,可以解构肿瘤浸润和循环T细胞及B细胞的异质性,以识别导致自身免疫病理的致病亚群。蛋白质组学有助于识别肿瘤特异性生物标志物,而代谢组学则提供了对自身反应性免疫细胞代谢脆弱性的见解。多组学分析揭示了副肿瘤反应的细胞和分子级联反应。高通量T细胞受体(TCR)和B细胞受体(BCR)测序提供了寡克隆扩增的直接证据,确定了可能识别癌细胞和中枢神经系统星形胶质细胞上共享AQP4表位的特定T细胞和B细胞克隆。这些扩增的B细胞显示出成熟的、抗原驱动反应的特征,包括致病性AQP4-IgG的类别转换和亲和力成熟。此外,对T细胞动力学的分析揭示了一种促炎环境,调节性T细胞(Tregs)功能受损,Th17和Th1细胞的平衡偏向,这可能由肿瘤引发,并通过关键的T-B细胞相互作用(如IFN-I→B细胞→IL-6→致病性Th17轴)在中枢神经系统中持续存在。尽管有这些见解,但将这些发现转化为临床实践仍面临重大挑战。一个关键障碍是利用多组学开发一种可靠的分子特征,以便在诊断时区分副肿瘤性和特发性NMOSD,从而简化对高危患者的癌症筛查。需要先进的计算工具,包括人工智能和机器学习,来整合大量数据并识别细微差异。未来的研究必须优先分析纵向样本(肿瘤治疗前后)以及对已确定的致病途径进行功能验证。总之,多组学正在极大地增进我们对肿瘤如何在副肿瘤性NMOSD中启动和维持特定的、靶向性自身免疫反应的理解。这种深入的机制研究不仅有望改善这些复杂患者的诊断和个性化治疗,还可作为理解其他副肿瘤综合征的有力模型,最终弥合肿瘤学和神经免疫学领域的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b22f/12436503/f22497444b33/fimmu-16-1665688-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验