Wang Ningning, Li Weizhen, Yang Tuo, Li Baolong, Meng Chuikai, Zhou Xiongyao, Sun Jialu, Yu Kaiming, Cui Shusen, Cao Rangjuan
Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
Jilin Provincial Key Laboratory of Peripheral Nerve Injury and Regeneration, Changchun 130033, China.
Theranostics. 2025 Aug 11;15(17):8873-8896. doi: 10.7150/thno.119712. eCollection 2025.
Ion homeostasis is disrupted following nerve injury, and elevated Ca levels have been reported to induce Schwann cell (SC) death. Notably, clinical interventions such as electrical stimulation enhance Ca influx and facilitate nerve regeneration. These findings highlight the need to clarify the precise role of Ca signaling in nerve regeneration. We assessed extracellular Ca concentrations in both human and murine peripheral nerve tissues after injury. Transcriptomic profiling identified CB1R as a key Ca-related gene and validation was performed with primary cultured SC and nerve explants. A sciatic nerve crush model was established in SC-specific CB1R knockout mice. Mitophagy, cellular metabolic homeostasis, and axonal regeneration were systematically assessed using proteomics, calcium imaging, and analyses. Additionally, the CB1R antagonist JD5037 was administered in both sciatic and optic nerve injury models to evaluate its translational potential. Peripheral nerve injury (PNI) leads to elevated extracellular Ca levels at the injury site, where a moderate increase (~1.5-fold) favors SC survival. PNI also induces upregulation of CB1R, genetic ablation of CB1R enhances Ca influx, promotes SC survival, and maintains metabolic homeostasis. Mechanistically, CB1R interference upregulates adenine nucleotide translocase 2 (ANT2) expression, promotes mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane depolarization, thereby activating PINK1/Parkin-mediated mitophagy. This process improves mitochondrial quality and enhances energy metabolic efficiency, ultimately promoting axonal regeneration and functional recovery. Furthermore, systemic administration of the CB1R antagonist JD5037 similarly enhances regeneration of both peripheral and optic nerves . Moderate extracellular Ca elevation establishes a pro-regenerative microenvironment after nerve injury. Targeting CB1R facilitates Ca influx, enhances mitophagy via the PINK1/Parkin pathway, and promotes nerve regeneration. These findings identify CB1R as a viable therapeutic target and support the translational potential of JD5037 for nerve injury treatment.
神经损伤后离子稳态被破坏,据报道钙离子水平升高会诱导雪旺细胞(SC)死亡。值得注意的是,电刺激等临床干预会增强钙离子内流并促进神经再生。这些发现凸显了阐明钙离子信号在神经再生中确切作用的必要性。我们评估了人和小鼠外周神经组织损伤后的细胞外钙离子浓度。转录组分析确定CB1R为关键的钙离子相关基因,并在原代培养的雪旺细胞和神经外植体上进行了验证。在雪旺细胞特异性CB1R基因敲除小鼠中建立坐骨神经挤压模型。使用蛋白质组学、钙成像和分析系统地评估了线粒体自噬、细胞代谢稳态和轴突再生。此外,在坐骨神经和视神经损伤模型中给予CB1R拮抗剂JD5037以评估其转化潜力。外周神经损伤(PNI)导致损伤部位细胞外钙离子水平升高,适度升高(约1.5倍)有利于雪旺细胞存活。PNI还诱导CB1R上调,CB1R基因缺失会增强钙离子内流,促进雪旺细胞存活并维持代谢稳态。从机制上讲,CB1R干扰会上调腺嘌呤核苷酸转位酶2(ANT2)的表达,促进线粒体通透性转换孔(mPTP)开放和线粒体膜去极化,从而激活PINK1/Parkin介导的线粒体自噬。这一过程改善了线粒体质量并提高了能量代谢效率,最终促进轴突再生和功能恢复。此外,系统性给予CB1R拮抗剂JD5037同样能增强外周神经和视神经的再生。适度的细胞外钙离子升高在神经损伤后建立了一个促再生的微环境。靶向CB1R会促进钙离子内流,通过PINK1/Parkin途径增强线粒体自噬,并促进神经再生。这些发现确定CB1R是一个可行的治疗靶点,并支持JD5037在神经损伤治疗中的转化潜力。