Suppr超能文献

EHMT2控制神经嵴衍生的颅面发育,但在肢体发育中并非必需。

EHMT2 Controls Neural Crest-Derived Craniofacial Development but is Dispensable in Limb Development.

作者信息

Liu Ye, Zhao Yaguang, Liu Minmin, Kim Paul, Liao Ji, Lu Di, Liu Huadie, Szabó Piroska E, Yang Tao

出版信息

bioRxiv. 2025 Sep 8:2025.09.07.674526. doi: 10.1101/2025.09.07.674526.

Abstract

Post-translational modifications of histones, such as methylation of histone H3 at lysine 9 (H3K9), play critical roles in regulating chromatin structure and gene expression. EHMT2 (also called G9A), a histone methyltransferase, mediates H3K9 mono- and dimethylation and has been implicated in both transcriptional repression and context-specific gene activation. Although global knockout of the mouse gene results in early embryonic lethality, tissue-specific knockouts have uncovered diverse roles in organ development. However, how EHMT2 contributes to skeletal development in a lineage-specific manner remains to be fully elucidated. Here, we investigated the role of EHMT2 in skeletal development by conditionally inactivating in neural crest-derived and mesoderm-derived progenitors using and mouse lines, respectively. Loss of function in neural crest cells led to postnatal growth failure and craniofacial defects, including delayed intramembranous ossification and malformations of the jaw and cranial base. Transcriptomic analysis of neural crest cells revealed disrupted chromatin regulatory networks, reduced expression of proliferation-associated genes, and upregulation of inflammatory pathways. In contrast, inactivation of in -expressing mesodermal progenitors had minimal impact on limb and cranial bone development, with no significant alterations in bone mass or osteoblast function. Together, these results reveal a lineage-specific requirement for EHMT2 in neural crest-derived skeletal tissues, suggesting that distinct progenitor populations exhibit differential dependency for bone development.

摘要

组蛋白的翻译后修饰,如组蛋白H3赖氨酸9位点(H3K9)的甲基化,在调节染色质结构和基因表达中起关键作用。EHMT2(也称为G9A)是一种组蛋白甲基转移酶,介导H3K9单甲基化和二甲基化,并与转录抑制和特定背景下的基因激活有关。尽管小鼠基因的整体敲除会导致早期胚胎致死,但组织特异性敲除已揭示其在器官发育中的多种作用。然而,EHMT2如何以谱系特异性方式促进骨骼发育仍有待充分阐明。在这里,我们分别使用和小鼠品系,通过在神经嵴来源和中胚层来源的祖细胞中条件性失活来研究EHMT2在骨骼发育中的作用。神经嵴细胞中功能的丧失导致出生后生长衰竭和颅面缺陷,包括膜内成骨延迟以及颌骨和颅底畸形。对神经嵴细胞的转录组分析揭示了染色质调节网络的破坏、增殖相关基因表达的降低以及炎症途径的上调。相比之下,在表达的中胚层祖细胞中失活对肢体和颅骨发育的影响最小,骨量或成骨细胞功能没有明显改变。总之,这些结果揭示了神经嵴来源的骨骼组织对EHMT2有谱系特异性需求,表明不同的祖细胞群体对骨骼发育表现出不同的依赖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41d9/12439983/652bf04524c5/nihpp-2025.09.07.674526v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验