Li Jialing, Li Fengzhi, Chen Xue, Ma Jie, Guo Hua
Reproductive Medicine Center, General Hosptial of Ningxia Medical University, Yinchuan, China.
The Fifth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China.
J Biochem Mol Toxicol. 2025 Sep;39(9):e70495. doi: 10.1002/jbt.70495.
Diminished ovarian reserve (DOR) is a leading cause of female infertility, and currently, no effective therapeutic options are available. α-Cyperone (AC) possesses various pharmacological properties, including anti-inflammatory and antioxidant effects. However, its clinical application is hindered by poor water solubility, a short half-life, and nonspecific toxicity. In this study, we utilized nanotechnology to develop a novel dual-targeted nanocomplex, termed PLGA@AC@FSHL-M (PAMF) nanoparticles (NPs), comprising poly(lactic-co-glycolic acid) (PLGA) encapsulating AC and camouflaged with a macrophage membrane modified by the FSHL81-95 peptide. This design enabled efficient delivery of AC while simultaneously targeting granulosa cells (GCs). Our findings demonstrated that PAMF NPs significantly reduced the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in lipopolysaccharide (LPS)-induced KGN cells. Furthermore, AC-loaded PAMF NPs enhanced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1), while inhibiting NF-κβ activation. These results suggest that biomimetic AC-loaded nanoparticles effectively suppress apoptosis and promote proliferation under inflammatory conditions in KGN cells, offering a promising therapeutic strategy for DOR.
卵巢储备功能减退(DOR)是女性不孕的主要原因,目前尚无有效的治疗方法。α-香附酮(AC)具有多种药理特性,包括抗炎和抗氧化作用。然而,其临床应用受到水溶性差、半衰期短和非特异性毒性的阻碍。在本研究中,我们利用纳米技术开发了一种新型的双靶向纳米复合物,称为PLGA@AC@FSHL-M(PAMF)纳米颗粒(NPs),它由包裹AC的聚乳酸-羟基乙酸共聚物(PLGA)和用FSHL81-95肽修饰的巨噬细胞膜伪装而成。这种设计能够有效地递送AC,同时靶向颗粒细胞(GCs)。我们的研究结果表明,PAMF NPs显著降低了脂多糖(LPS)诱导的KGN细胞中肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)和白细胞介素-1β(IL-1β)的产生。此外,负载AC的PAMF NPs增强了核因子红细胞2相关因子2(Nrf2)的核转位并上调了血红素加氧酶-1(HO-1),同时抑制NF-κβ激活。这些结果表明,仿生负载AC的纳米颗粒在KGN细胞的炎症条件下有效地抑制细胞凋亡并促进增殖,为DOR提供了一种有前景的治疗策略。