Xiao Fuyu, Li Xinye, Yang Songwei, Lai Wenbin, Wang Yiyi, Luo Fenqiang, Chen Lihui, Liu Renpin, Chen Xiaochuan, Fan Haosen, Chen Qinghua, Qian Qingrong, Zeng Lingxing
Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian 350007, China.
Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian 350007, China..
J Colloid Interface Sci. 2026 Jan 15;702(Pt 2):139036. doi: 10.1016/j.jcis.2025.139036. Epub 2025 Sep 15.
Bismuth sulfide (BiS), known for its high capacity, has been considered a promising anode material for high-performance sodium/potassium-ion batteries (SIBs/PIBs). However, the practical application of BiS is limited by its poor intrinsic electrical conductivity, significant volume fluctuations and sluggish reaction kinetics. The synergistic strategy of confinement engineering and heteroatom doping can effectively address these issues. Herein, a composite material of selenium-substituted BiS (BiSSe) embedded in selenium-substituted sulfurized polyacrylonitrile (SSePAN) is successfully synthesized (denoted as BiSSe-SSePAN). The incorporation of selenium significantly enhances the electrical conductivity of the material and accelerates the redox conversion of sulfur. Moreover, the confinement effect of the SSePAN matrix effectively prevents the agglomeration of BiSSe nanoparticles and mitigates volume variations. The BiSSe-SSePAN anode demonstrates outstanding sodium/potassium storage performance, achieving a high reversible capacity, superior rate capability, and prolonged cycle lifespan (e.g. 275 mAh g/38000 cycles/15 A g in SIBs). Notably, BiSSe-SSePAN can operate stably over a wide temperature range (-15 °C to 50 °C). The assembled BiSSe-SSePAN//NaV(PO) (NVP) full cell delivers a stable capacity of 375 mAh g over 500 cycles at 2 A g. It is worth noting that the BiSSe-SSePAN//NVP pouch cell exhibits a high capacity of 146 mAh after 400 cycles at 0.1 A g, confirming its potential for practical applications. This work provides an innovative insight into advancing the performance of metal sulfides in pouch cells and wide temperature workability.
硫化铋(BiS)以其高容量而闻名,被认为是用于高性能钠/钾离子电池(SIBs/PIBs)的一种有前景的负极材料。然而,BiS的实际应用受到其固有的低电导率、显著的体积波动和缓慢的反应动力学的限制。限域工程和杂原子掺杂的协同策略可以有效解决这些问题。在此,成功合成了一种嵌入硒取代的硫化聚丙烯腈(SSePAN)中的硒取代BiS(BiSSe)复合材料(表示为BiSSe-SSePAN)。硒的掺入显著提高了材料的电导率并加速了硫的氧化还原转化。此外,SSePAN基体的限域效应有效地防止了BiSSe纳米颗粒的团聚并减轻了体积变化。BiSSe-SSePAN负极表现出出色的钠/钾存储性能,实现了高可逆容量、优异的倍率性能和延长的循环寿命(例如在SIBs中为275 mAh g/38000次循环/15 A g)。值得注意的是,BiSSe-SSePAN可以在很宽的温度范围(-15°C至50°C)内稳定运行。组装的BiSSe-SSePAN//NaV(PO)(NVP)全电池在2 A g下500次循环中提供375 mAh g的稳定容量。值得注意的是,BiSSe-SSePAN//NVP软包电池在0.1 A g下400次循环后表现出146 mAh的高容量,证实了其实际应用潜力。这项工作为提高软包电池中金属硫化物的性能和宽温度适用性提供了创新见解。