Suppr超能文献

利用铁-钼原子界面促进可持续污染物降解中的电子转移和活性氧生成

Harnessing Fe-Mo Atomic Interfaces for Boosted Electron Transfer and ROS Generation in Sustainable Pollutant Degradation.

作者信息

Liang Lihong, Cao Jiazhen, Chen Zhuan, Liang Zhiyan, Jiang Yue, Xing Mingyang

机构信息

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

出版信息

Environ Sci Technol. 2025 Sep 18. doi: 10.1021/acs.est.5c06307.

Abstract

Developing efficient and sustainable catalytic systems for persistent organic pollutant degradation remains a critical challenge in wastewater treatment. Herein, we present a novel FeMo-OCN catalyst integrating iron clusters and molybdenum single atoms with oxygen coordination, which synergistically activates peroxymonosulfate (PMS) to generate reactive oxygen species (ROS), including sulfate radicals (SO) and singlet oxygen (O), for enhanced pollutant degradation. Density functional theory (DFT) calculations and experimental studies reveal that Mo single atoms facilitate pollutant adsorption via oxygen coordination, while Fe clusters drive PMS activation, enabling efficient electron transfer and ROS generation. The FeMo-OCN/PMS system achieves rapid degradation (>90% within 1 min) and high mineralization (73% TOC removal) of phenol, along with robust stability over 30 reaction cycles and broad pH adaptability (pH 2-11). Apart from phenol, this system demonstrates outstanding degradation efficiency for other phenolic contaminants as well. The practical applicability of the system is demonstrated by chemical oxygen demand (COD) removal efficiencies of 91, 44, and 33% for phenolic, high-salinity, and alcohol-containing wastewaters, respectively, outperforming conventional Fe/HO systems and activated carbon treatments. Heterogeneous catalytic model quantifies the contribution of ROS and the mass transfer behaviors of pollutants at the solid-liquid interface. Sensitivity analysis confirms that the O-facilitated generation of p-benzoquinone (p-BQ) is the rate-determining step in the overall reaction pathway. Life cycle assessment (LCA) confirms the system's superior environmental sustainability and cost-effectiveness compared to conventional Fenton systems (Fe/HO and Fe/PMS), with minimal metal leaching. This work highlights the critical role of interfacial electronic interactions in catalytic design and provides a scalable strategy for durable, eco-friendly wastewater remediation.

摘要

开发用于持久性有机污染物降解的高效且可持续的催化体系仍然是废水处理中的一项关键挑战。在此,我们展示了一种新型的FeMo-OCN催化剂,它将铁簇和钼单原子与氧配位相结合,协同激活过一硫酸盐(PMS)以产生活性氧物种(ROS),包括硫酸根自由基(SO)和单线态氧(O),以增强污染物降解。密度泛函理论(DFT)计算和实验研究表明,钼单原子通过氧配位促进污染物吸附,而铁簇驱动PMS活化,实现高效电子转移和ROS生成。FeMo-OCN/PMS体系实现了苯酚的快速降解(1分钟内>90%)和高矿化率(TOC去除率73%),在30个反应循环中具有强大的稳定性和广泛的pH适应性(pH 2-11)。除了苯酚,该体系对其他酚类污染物也表现出优异的降解效率。该体系的实际适用性通过对含酚废水、高盐废水和含醇废水的化学需氧量(COD)去除效率分别为91%、44%和33%得到证明,优于传统的Fe/HO体系和活性炭处理。非均相催化模型量化了ROS的贡献以及污染物在固液界面的传质行为。敏感性分析证实,O促进对苯醌(p-BQ)的生成是整个反应途径中的速率决定步骤。生命周期评估(LCA)证实,与传统芬顿体系(Fe/HO和Fe/PMS)相比,该体系具有卓越的环境可持续性和成本效益,且金属浸出极少。这项工作突出了界面电子相互作用在催化设计中的关键作用,并为持久、环保的废水修复提供了一种可扩展的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验