Suppr超能文献

YOLOv8-MFD:一种利用无人机图像检测松树萎蔫病树的增强模型。

YOLOv8-MFD: An Enhanced Detection Model for Pine Wilt Diseased Trees Using UAV Imagery.

作者信息

Shi Hua, Wang Yonghang, Feng Xiaozhou, Xie Yufen, Zhu Zhenhui, Guo Hui, Jin Guofeng

机构信息

College of Sciences, Xi'an Technological University, Xi'an 710021, China.

Shaanxi Academy of Forestry, Xi'an 710016, China.

出版信息

Sensors (Basel). 2025 May 24;25(11):3315. doi: 10.3390/s25113315.

Abstract

Pine Wilt Disease (PWD) is a highly infectious and lethal disease that severely threatens global pine forest ecosystems and forestry economies. Early and accurate detection of infected trees is crucial to prevent large-scale outbreaks and support timely forest management. However, existing remote sensing-based detection models often struggle with performance degradation in complex environments, as well as a trade-off between detection accuracy and real-time efficiency. To address these challenges, we propose an improved object detection model, YOLOv8-MFD, designed for accurate and efficient detection of PWD-infected trees from UAV imagery. The model incorporates a MobileViT-based backbone that fuses convolutional neural networks with Transformer-based global modeling to enhance feature representation under complex forest backgrounds. To further improve robustness and precision, we integrate a Focal Modulation mechanism to suppress environmental interference and adopt a Dynamic Head to strengthen multi-scale object perception and adaptive feature fusion. Experimental results on a UAV-based forest dataset demonstrate that YOLOv8-MFD achieves a precision of 92.5%, a recall of 84.7%, an F1-score of 88.4%, and a mAP@0.5 of 88.2%. Compared to baseline models such as YOLOv8 and YOLOv10, our method achieves higher accuracy while maintaining acceptable computational cost (11.8 GFLOPs) and a compact model size (10.2 MB). Its inference speed is moderate and still suitable for real-time deployment. Overall, the proposed method offers a reliable solution for early-stage PWD monitoring across large forested areas, enabling more timely disease intervention and resource protection. Furthermore, its generalizable architecture holds promise for broader applications in forest health monitoring and agricultural disease detection.

摘要

松材线虫病(PWD)是一种极具传染性和致命性的疾病,严重威胁着全球松林生态系统和林业经济。早期准确检测受感染树木对于预防大规模疫情爆发和支持及时的森林管理至关重要。然而,现有的基于遥感的检测模型在复杂环境中往往存在性能下降的问题,并且在检测精度和实时效率之间存在权衡。为了应对这些挑战,我们提出了一种改进的目标检测模型YOLOv8-MFD,旨在从无人机图像中准确高效地检测出受PWD感染的树木。该模型采用了基于MobileViT的主干网络,将卷积神经网络与基于Transformer的全局建模相结合,以增强在复杂森林背景下的特征表示。为了进一步提高鲁棒性和精度,我们集成了一种焦点调制机制来抑制环境干扰,并采用动态头部来加强多尺度目标感知和自适应特征融合。在基于无人机的森林数据集上的实验结果表明,YOLOv8-MFD的精度达到92.5%,召回率达到84.7%,F1分数达到88.4%,mAP@0.5达到88.2%。与YOLOv8和YOLOv10等基线模型相比,我们的方法在保持可接受的计算成本(11.8 GFLOPs)和紧凑的模型大小(10.2 MB)的同时,实现了更高的精度。其推理速度适中,仍然适合实时部署。总体而言,所提出的方法为跨大面积森林的PWD早期监测提供了可靠的解决方案,能够实现更及时的疾病干预和资源保护。此外,其通用架构有望在森林健康监测和农业病害检测中得到更广泛的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验