Suppr超能文献

DynaFusion-SLAM:用于推草机器人的自主导航算法的多传感器融合与动态优化

DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot.

作者信息

Liu Zhiwei, Fang Jiandong, Zhao Yudong

机构信息

College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China.

Inner Mongolia Key Laboratory of Intelligent Perception and System Engineering, Hohhot 010080, China.

出版信息

Sensors (Basel). 2025 May 28;25(11):3395. doi: 10.3390/s25113395.

Abstract

Aiming to address the problems of fewer related studies on autonomous navigation algorithms based on multi-sensor fusion in complex scenarios in pastures, lower degrees of fusion, and insufficient cruising accuracy of the operation path in complex outdoor environments, a multimodal autonomous navigation system is proposed based on a loosely coupled architecture of Cartographer-RTAB-Map (real-time appearance-based mapping). Through laser-vision inertial guidance multi-sensor data fusion, the system achieves high-precision mapping and robust path planning in complex scenes. First, comparing the mainstream laser SLAM algorithms (Hector/Gmapping/Cartographer) through simulation experiments, Cartographer is found to have a significant memory efficiency advantage in large-scale scenarios and is thus chosen as the front-end odometer. Secondly, a two-way position optimization mechanism is innovatively designed: (1) When building the map, Cartographer processes the laser with IMU and odometer data to generate mileage estimations, which provide positioning compensation for RTAB-Map. (2) RTAB-Map fuses the depth camera point cloud and laser data, corrects the global position through visual closed-loop detection, and then uses 2D localization to construct a bimodal environment representation containing a 2D raster map and a 3D point cloud, achieving a complete description of the simulated ranch environment and material morphology and constructing a framework for the navigation algorithm of the pushing robot based on the two types of fused data. During navigation, the combination of RTAB-Map's global localization and AMCL's local localization is used to generate a smoother and robust positional attitude by fusing IMU and odometer data through the EKF algorithm. Global path planning is performed using Dijkstra's algorithm and combined with the TEB (Timed Elastic Band) algorithm for local path planning. Finally, experimental validation is performed in a laboratory-simulated pasture environment. The results indicate that when the RTAB-Map algorithm fuses with the multi-source odometry, its performance is significantly improved in the laboratory-simulated ranch scenario, the maximum absolute value of the error of the map measurement size is narrowed from 24.908 cm to 4.456 cm, the maximum absolute value of the relative error is reduced from 6.227% to 2.025%, and the absolute value of the error at each location is significantly reduced. At the same time, the introduction of multi-source mileage fusion can effectively avoid the phenomenon of large-scale offset or drift in the process of map construction. On this basis, the robot constructs a fusion map containing a simulated pasture environment and material patterns. In the navigation accuracy test experiments, our proposed method reduces the root mean square error (RMSE) coefficient by 1.7% and Std by 2.7% compared with that of RTAB-MAP. The RMSE is reduced by 26.7% and Std by 22.8% compared to that of the AMCL algorithm. On this basis, the robot successfully traverses the six preset points, and the measured X and Y directions and the overall position errors of the six points meet the requirements of the pasture-pushing task. The robot successfully returns to the starting point after completing the task of multi-point navigation, achieving autonomous navigation of the robot.

摘要

针对以往在牧场复杂场景下基于多传感器融合的自主导航算法相关研究较少、融合程度较低以及复杂户外环境中作业路径巡航精度不足等问题,提出了一种基于Cartographer - RTAB - Map(基于实时外观的映射)松散耦合架构的多模态自主导航系统。通过激光 - 视觉惯性制导多传感器数据融合,该系统在复杂场景中实现了高精度映射和稳健的路径规划。首先,通过仿真实验比较主流激光同步定位与地图构建(SLAM)算法(Hector/Gmapping/Cartographer),发现Cartographer在大规模场景中具有显著的内存效率优势,因此被选作前端里程计。其次,创新性地设计了一种双向位置优化机制:(1)在构建地图时,Cartographer利用惯性测量单元(IMU)和里程计数据处理激光,生成里程估计,为RTAB - Map提供定位补偿。(2)RTAB - Map融合深度相机点云和激光数据,通过视觉闭环检测校正全局位置,然后使用二维定位构建包含二维光栅地图和三维点云的双模态环境表示,实现对模拟牧场环境和物料形态的完整描述,并基于这两种融合数据构建推料机器人导航算法框架。在导航过程中,利用RTAB - Map的全局定位与自适应蒙特卡洛定位(AMCL)的局部定位相结合,通过扩展卡尔曼滤波(EKF)算法融合IMU和里程计数据,生成更平滑、稳健的位置姿态。使用迪杰斯特拉算法进行全局路径规划,并结合时间弹性带(TEB)算法进行局部路径规划。最后,在实验室模拟牧场环境中进行实验验证。结果表明,当RTAB - Map算法与多源里程计融合时,在实验室模拟牧场场景中其性能显著提升,地图测量尺寸误差的最大绝对值从24.908厘米缩小到4.456厘米,相对误差的最大绝对值从6.227%降低到2.025%,且各位置误差的绝对值均显著降低。同时,引入多源里程融合可有效避免地图构建过程中出现大规模偏移或漂移现象。在此基础上,机器人构建了包含模拟牧场环境和物料图案的融合地图。在导航精度测试实验中,与RTAB - MAP相比,我们提出的方法将均方根误差(RMSE)系数降低了1.7%,标准差(Std)降低了2.7%。与AMCL算法相比,RMSE降低了26.7%,Std降低了22.8%。在此基础上,机器人成功遍历六个预设点,六个点的测量X和Y方向以及整体位置误差均满足牧场推料任务要求。机器人在完成多点导航任务后成功返回起点,实现了机器人的自主导航。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a3/12157880/c26a00cc81c9/sensors-25-03395-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验