Suppr超能文献

一种基于深度学习的微流控芯片中细胞趋化性定量分析的模型方法。

A Deep Learning-Based Model Approach for Quantitative Analysis of Cell Chemotaxis in a Microfluidic Chip.

作者信息

Wu Hongxuan, Zhang Fei, Wei Mingji

机构信息

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Sensors (Basel). 2025 Jun 3;25(11):3515. doi: 10.3390/s25113515.

Abstract

The rapid and accurate quantitative analysis of cell chemotaxis, which is essential in biology, medicine, and drug development, enables the evaluation of the directional migration capability of cells and the simulation of in vivo cell chemotaxis. However, traditional methods for studying cell chemotaxis often depend on complex experimental procedures, which are not only time-consuming and labor-intensive but also prone to human error. Recently, the rapid advancement of microfluidic technology and deep learning has provided a new way for evaluation of cell chemotaxis. In this study, a chemotaxis evaluation method based on microfluidics and deep learning is proposed. A microfluidic device was designed to simulate cell chemotaxis, allowing for the controlled assessment of cell chemotaxis by generating chemical gradients within microchannels and shear stress. Concurrently, deep learning technology was introduced to identify the migrated and non-migrated states of cell images, thereby enabling the automatic counting and analysis of chemotactic cells. Compared with traditional manual assays, this method not only reduced time and labor costs but also achieved higher accuracy and reproducibility. This innovative approach, which integrates microfluidics and deep learning, provides a novel perspective and tool for cell chemotaxis research. This method not only offers a fresh perspective on cell migration analysis but also has the potential to significantly advance the field of biomedical research, particularly in biosensor development related to drug discovery and disease diagnosis.

摘要

细胞趋化性的快速准确的定量分析在生物学、医学和药物开发中至关重要,它能够评估细胞的定向迁移能力并模拟体内细胞趋化性。然而,传统的细胞趋化性研究方法往往依赖于复杂的实验程序,不仅耗时费力,而且容易出现人为误差。近年来,微流控技术和深度学习的快速发展为细胞趋化性评估提供了新途径。在本研究中,提出了一种基于微流控和深度学习的趋化性评估方法。设计了一种微流控装置来模拟细胞趋化性,通过在微通道内产生化学梯度和剪切应力来实现对细胞趋化性的可控评估。同时,引入深度学习技术来识别细胞图像的迁移和未迁移状态,从而实现对趋化细胞的自动计数和分析。与传统的手动检测方法相比,该方法不仅降低了时间和劳动力成本,而且具有更高的准确性和可重复性。这种将微流控和深度学习相结合的创新方法为细胞趋化性研究提供了新的视角和工具。该方法不仅为细胞迁移分析提供了新视角,而且有潜力显著推动生物医学研究领域的发展,特别是在与药物发现和疾病诊断相关的生物传感器开发方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验