Sannino Isabella, Lombardo Luca, Es Sebar Leila, Parvis Marco, Comba Allegra, Scotti Nicola, Angelini Emma, Iannucci Leonardo, Shokuhfar Tolou, Grassini Sabrina
Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy.
Sensors (Basel). 2025 May 31;25(11):3476. doi: 10.3390/s25113476.
Oral caries is one of the most common oral diseases worldwide, affecting about 2.4 billion people. This phenomenon always starts with enamel demineralization, eventually progressing to tooth cavitation and loss when not properly treated. Nowadays, the standard diagnostic techniques to detect demineralization strongly depend on the operator's expertise and are characterized by fairly low sensitivity and specificity, and/or involve ionizing radiation. This study investigates the feasibility of a non-invasive, effective, rapid, and radiation-free approach employing impedance spectroscopy for early caries detection. Two binary classifiers were developed for automated assessment and validated using a dataset obtained by in vitro demineralization of human teeth. A computationally efficient single-neuron classifier, utilizing a single impedance phase measurement at 15 Hz, achieved 88% accuracy, offering a lightweight, low-power solution suitable for microcontroller implementation and rapid measurements. A Multi-Layer Perceptron (MLP) classifier, utilizing equivalent circuit element values, yielded a similar accuracy of 86%. A prototype of a diagnostic portable tool was developed and characterized, demonstrating reliable impedance phase measurement (uncertainty < 2°). The performance of these classifiers meets or exceeds the existing AI-based methodologies for caries detection relying on radiographic data. This work introduces a novel application of AI to tooth impedance spectra, addressing a significant research gap in non-invasive diagnostics and laying the foundation for a novel, accessible, and accurate tool for early caries management.
龋齿是全球最常见的口腔疾病之一,影响着约24亿人。这种现象通常始于牙釉质脱矿,若未得到妥善治疗,最终会发展为牙洞形成和牙齿脱落。如今,检测脱矿的标准诊断技术在很大程度上依赖于操作人员的专业知识,其特点是灵敏度和特异性相当低,和/或涉及电离辐射。本研究探讨了采用阻抗谱进行早期龋齿检测的一种非侵入性、有效、快速且无辐射方法的可行性。开发了两种二元分类器用于自动评估,并使用通过人牙体外脱矿获得的数据集进行了验证。一种计算效率高的单神经元分类器,利用15Hz的单个阻抗相位测量,准确率达到88%,提供了一种适用于微控制器实现和快速测量的轻量级、低功耗解决方案。一种利用等效电路元件值的多层感知器(MLP)分类器,准确率也达到了相似的86%。开发并表征了一种诊断便携式工具的原型,其阻抗相位测量可靠(不确定度<2°)。这些分类器的性能达到或超过了现有的基于人工智能的依赖射线照相数据的龋齿检测方法。这项工作将人工智能引入牙齿阻抗谱的新应用,填补了非侵入性诊断方面的重大研究空白,并为新型、便捷且准确的早期龋齿管理工具奠定了基础。