Zaman Rahid, Hossain Mohammad Ibrahim, Raiyan Ahmed Zubayer, Chowdhury Shuvo, Jackson Aaron, Koster Arthur Thomas, Adnan Ashfaq
Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
Front Bioeng Biotechnol. 2025 Sep 3;13:1597267. doi: 10.3389/fbioe.2025.1597267. eCollection 2025.
Head and neck injuries, including traumatic brain injuries (TBI), are a leading cause of disability and death worldwide. It affects millions of people worldwide, from automobiles to sports to military personnel. This study investigates the influence of impact locations, severities, and neck strength on head and neck injury parameters using a musculoskeletal head-neck model in OpenSim software.
We hypothesize that eccentric impacts, particularly those on the anterolateral side, increase GAMBIT and Neck Injury Criteria (NIC) due to elevated rotational accelerations, and that higher neck strength mitigates GAMBIT and NIC under these impacts. To test our hypotheses, we investigated a total of 63 cases in which seven impact locations (two from the anterior side, two from the posterior side, and three from lateral sides), three neck strengths (low, mid, high strength capacity), and three impact severities (low, moderate, and high) were explored. Seven output parameters were analyzed: linear and rotational accelerations, the Generalized Acceleration Model for Brain Injury Threshold (GAMBIT), neck force, neck moment, and Neck Injury Criteria (NIC) and neck muscle strain.
Results reveal that anterolateral eccentric impacts pose the greatest risk, with rotational acceleration reaching 4,176 that is 4.75 times higher than anterior central impacts (879 rad/s). GAMBIT values for moderate and high severity impacts are 1.44 and 1.54 times greater than low severity impacts, respectively. Head and neck injury parameters vary minimally (10) with neck strength.
In summary, the severities and location of impacts had a significant role in GAMBIT and NIC, and the anterolateral eccentric impact had a higher probability of head and neck injury than the other six impact locations. These findings underscore the critical role of impact location and severity in injury risk and suggest helmet padding in lateral and anterolateral zones with energy-absorbing materials to reduce rotational acceleration.
头部和颈部损伤,包括创伤性脑损伤(TBI),是全球致残和死亡的主要原因。它影响着全球数百万人,涉及汽车事故、体育运动和军事人员等各个领域。本研究使用OpenSim软件中的肌肉骨骼头颈模型,研究撞击位置、严重程度和颈部力量对头部和颈部损伤参数的影响。
我们假设偏心撞击,特别是前外侧的撞击,由于旋转加速度升高会增加GAMBIT和颈部损伤标准(NIC),并且较高的颈部力量会减轻这些撞击下的GAMBIT和NIC。为了验证我们的假设,我们总共研究了63个案例,其中探讨了七个撞击位置(两个来自前侧,两个来自后侧,三个来自侧面)、三种颈部力量(低、中、高力量容量)和三种撞击严重程度(低、中、高)。分析了七个输出参数:线性和旋转加速度、脑损伤阈值广义加速度模型(GAMBIT)、颈部力、颈部力矩、颈部损伤标准(NIC)和颈部肌肉应变。
结果表明,前外侧偏心撞击风险最大,旋转加速度达到4176,比前中央撞击(879 rad/s)高4.75倍。中度和高度严重撞击的GAMBIT值分别比低度严重撞击大1.44倍和1.54倍。头部和颈部损伤参数随颈部力量的变化最小(10)。
总之,撞击的严重程度和位置在GAMBIT和NIC中起着重要作用,前外侧偏心撞击导致头部和颈部受伤的可能性高于其他六个撞击位置。这些发现强调了撞击位置和严重程度在受伤风险中的关键作用,并建议在头盔的侧面和前外侧区域使用吸能材料进行填充,以降低旋转加速度。