Schink Severin, Polk Mark, Athaide Edward, Mukherjee Avik, Ammar Constantin, Liu Xili, Oh Seungeun, Chang Yu-Fang, Basan Markus
Systems Biology Department, Harvard Medical School, Boston, MA, USA.
Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany.
Nat Phys. 2024 Aug;20(8):1332-1338. doi: 10.1038/s41567-024-02511-2. Epub 2024 May 23.
The ability to survive starvation is an integral part of bacterial fitness and determines composition, turnover and biodiversity in microbial ecosystems. Starving bacteria enter a state known as plasmolysis in which their cytoplasm contracts from the cell wall. Plasmolysis is often thought to be a pathological, passive condition, arising automatically from the lack of ATP. Here we show that contrary to this notion, maintaining plasmolysis is an active, ATP-consuming state that is essential for starvation survival. We show that ion homeostasis to maintain plasmolysis consumes the largest part of the energy budget of starving cells and directly determines death rates in starvation. Our mathematical model accurately predicts death rates for various starvation conditions and perturbations. This enabled the development of an optimized starvation medium that would be ideally suited for preserving and transplanting natural microbial communities by maintaining viability but preventing outgrowth of a subset of the species.
在饥饿状态下存活的能力是细菌适应性的一个组成部分,它决定了微生物生态系统的组成、更替和生物多样性。处于饥饿状态的细菌会进入一种称为质壁分离的状态,在这种状态下,它们的细胞质会从细胞壁收缩。质壁分离通常被认为是一种病理性的、被动的状态,是由于缺乏ATP而自动产生的。然而,我们在此表明,与这种观念相反,维持质壁分离是一种主动的、消耗ATP的状态,这对于在饥饿状态下存活至关重要。我们发现,维持质壁分离的离子稳态消耗了处于饥饿状态细胞能量预算的最大部分,并直接决定了饥饿状态下的死亡率。我们的数学模型能够准确预测各种饥饿条件和干扰下的死亡率。这使得我们能够开发出一种优化的饥饿培养基,这种培养基非常适合通过维持活力但防止部分物种过度生长来保存和移植天然微生物群落。