Samadi Miandoab Payam, Liu Yaoying, Shang Xuying, Lv Tie, Xu Hui Jun, Zhang Gaolong, Xu Shouping
National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
School of Physics, Beihang Univeristy, Beijing, People's Republic of China.
Med Phys. 2025 Oct;52(10):e70014. doi: 10.1002/mp.70014.
Real-time tumor tracking helps overcome challenges in delivering accurate radiotherapy. Commercial tracking devices use a hybrid external-internal correlation model (ECM) that combines intermittent X-ray imaging of the tumor's internal position with continuous monitoring of external respiratory motion. This approach improves tracking accuracy and treatment effectiveness.
This study simulated using a deep learning model (CNN-GRU-Dense model) to track liver tumors in real-time during treatment-without needing ongoing updates. The model's accuracy was tested against several well-known methods, including the hybrid correlation model used in the CyberKnife system, the NG-RC model, and the augmented linear model.
The CNN-GRU-Dense model comprises convolutional, Gated Recurrent Units (GRU), and dense layers to estimate tumor position in various directions. Initially, input signals are processed through a 1D convolutional layer that employs 64 filters with a kernel size of 3 and ReLU activation to extract spatial features. Next, the extracted features are processed by two stacked GRU layers, each containing 256 units with ReLU activation, enabling the model to capture temporal dependencies. After the GRU layers, the data undergoes refinement through two dense (fully connected) layers, each with 64 units and ReLU activation, ensuring enhanced feature extraction. Finally, the output is passed through a single-unit output layer with linear activation, providing the estimated tumor position. For training the CNN-GRU-Dense model, 26 min of motion patterns (a patient-specific data) are utilized. The proposed model underwent hyperparameter optimization using the RandomSearch approach. This method explored a broad search space, which included the number of filters and kernel size in the 1D Convolutional layer, the number of GRU units, the number of fully connected dense layers, the learning rate, and the loss function. Using a learning rate 0.001, the model was optimized with the Adam optimizer and trained with the mean squared error (MSE) loss function. The training was conducted for 30 epochs with a batch size of 300, aiming to strike a balance between speed and stability during the learning process. Finally, the trained CNN-GRU-Dense model was tested with new external motion data to estimate tumor positions. The model parameters remain unchanged throughout the treatment, requiring no updates. Fifty-seven motion trace datasets from the CyberKnife system were used to evaluate the CNN-GRU-Dense model performance. These traces were grouped into three liver regions: central, lower, and upper.
The CNN-GRU-Dense model demonstrated improved estimation accuracy compared to other ECMs (Wilcoxon signed rank p < 0.05). The 3D radial estimation accuracy (Mean ± standard deviations (SD)) using the CyberKnife system, the NG-RC model, the augmented linear model, and the CNN-GRU-Dense model was 1.42 ± 0.44 mm, 1.23 ± 0.75 mm, 0.71 ± 0.40 mm, and 0.55 ± 0.27 mm, respectively.
The simulation results showed that the CNN-GRU-Dense model outperformed several existing methods, including the augmented linear model used in standard linear accelerators, the NG-RC model, and the constrained fourth-order polynomial equations used in the CyberKnife and Radixact systems. One key advantage of the CNN-GRU-Dense model is that it doesn't need to be updated during treatment, which reduces patients' radiation exposure.
实时肿瘤追踪有助于克服精确放疗过程中面临的挑战。商业追踪设备使用混合外部-内部关联模型(ECM),该模型将肿瘤内部位置的间歇性X射线成像与外部呼吸运动的连续监测相结合。这种方法提高了追踪精度和治疗效果。
本研究模拟使用深度学习模型(CNN-GRU-Dense模型)在治疗期间实时追踪肝脏肿瘤,且无需持续更新。将该模型的准确性与几种知名方法进行了测试对比,包括射波刀系统中使用的混合关联模型、NG-RC模型和增强线性模型。
CNN-GRU-Dense模型由卷积层、门控循环单元(GRU)和全连接层组成,用于估计肿瘤在各个方向上的位置。最初,输入信号通过一维卷积层进行处理,该层采用64个内核大小为3的滤波器并使用ReLU激活函数来提取空间特征。接下来,提取的特征由两个堆叠的GRU层进行处理,每个GRU层包含256个单元并使用ReLU激活函数,使模型能够捕捉时间依赖性。在GRU层之后,数据通过两个全连接层进行细化,每个全连接层有64个单元并使用ReLU激活函数,以确保增强特征提取。最后,输出通过具有线性激活函数的单单元输出层,提供估计的肿瘤位置。为了训练CNN-GRU-Dense模型,使用了26分钟的运动模式(特定患者数据)。所提出的模型使用随机搜索方法进行超参数优化。该方法探索了广泛的搜索空间,包括一维卷积层中的滤波器数量和内核大小、GRU单元数量、全连接层的数量、学习率和损失函数。使用学习率0.001,该模型使用Adam优化器进行优化,并使用均方误差(MSE)损失函数进行训练。训练进行30个轮次,批量大小为300,旨在在学习过程中在速度和稳定性之间取得平衡。最后,使用新的外部运动数据对训练好的CNN-GRU-Dense模型进行测试,以估计肿瘤位置。在整个治疗过程中,模型参数保持不变,无需更新。使用来自射波刀系统的57个运动轨迹数据集来评估CNN-GRU-Dense模型的性能。这些轨迹被分为肝脏的三个区域:中央、下部和上部。
与其他ECM相比,CNN-GRU-Dense模型显示出更高的估计准确性(Wilcoxon符号秩检验p < 0.05)。使用射波刀系统、NG-RC模型、增强线性模型和CNN-GRU-Dense模型的三维径向估计准确性(平均值±标准差)分别为1.42±0.44毫米、1.23±0.75毫米、0.71±0.40毫米和0.55±0.27毫米。
模拟结果表明,CNN-GRU-Dense模型优于几种现有方法,包括标准直线加速器中使用的增强线性模型、NG-RC模型以及射波刀和瑞普达系统中使用的约束四阶多项式方程。CNN-GRU-Dense模型的一个关键优势是在治疗期间无需更新,这减少了患者的辐射暴露。