Suppr超能文献

太阳能驱动的光催化去除水中头孢呋辛:工艺优化、机器学习与自然启发算法

Solar-driven photocatalytic removal of cefuroxime from water: process optimization machine learning and nature-inspired algorithms.

作者信息

Zeghbib Sara, Nasrallah Noureddine, Hafsa Haroun, Kebir Mohammed, Tahraoui Hichem, Lekmine Sabrina, Zeghbib Walid, Amrane Abdeltif, Ahmed Ali Fekri Abdulraqeb, Fadhillah Farid, Assadi Amine Aymen

机构信息

Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB BP 32 Algiers 16111 Algeria.

Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC) BP 384 Bou-Ismail Tipaza 42004 Algeria.

出版信息

RSC Adv. 2025 Sep 19;15(38):31767-31787. doi: 10.1039/d5ra04447b. eCollection 2025 Aug 29.

Abstract

The extensive presence of antibiotics in aquatic environments has raised significant concerns regarding their ecological impact and the potential development of antibiotic-resistant bacteria. This study investigates the photocatalytic degradation of Cefuroxime (CFX) using silver-doped zinc oxide (Ag-ZnO) nanoparticles under solar irradiation. Ag-ZnO nanoparticles were synthesized with varying Ag doping percentages (1, 2, 2.5, and 3 wt%) a sol-gel method, followed by structural and optical characterizations using XRD, SEM-EDS, ATR-FTIR, and UV-Vis spectroscopy. Photocatalytic experiments have revealed that 2 wt% Ag-ZnO exhibited the highest degradation efficiency, attributed to reduced electron-hole recombination and enhanced light absorption in the visible spectrum. The characterization results provided valuable information on the morphological, structural, and compositional features of the prepared catalysts, emphasizing the influence of different silver loadings on their properties. The optical study revealed a decrease in the band gap value from 3.15 eV (ZnO) to 3.01 eV (Ag:ZnO, 2%). Furthermore, the photodegradation kinetics were analyzed, and scavenger tests were performed to examine the role of reactive species, providing a comprehensive understanding of the photocatalytic mechanism. According to the kinetic study, CFX degradation followed pseudo-first-order kinetics, and Hydroxyl radicals (˙OH) were identified as the dominant reactive species driving the photodegradation process. To optimize the degradation process, a Decision Tree coupled with the Least Squares Boosting (DT_LSBOOST) algorithm was employed to model and predict CFX photodegradation efficiency based on key operational parameters: reaction time, catalyst dosage, initial CFX concentration, pH, and Ag doping percentage. The optimized DT_LSBOOST model demonstrated high predictive accuracy ( > 0.9996) with minimal root mean square error (RMSE < 0.88). Furthermore, the Dragonfly Algorithm (DA) was implemented to determine the optimal reaction conditions, achieving an experimentally validated degradation rate of 84.25% under optimized conditions (pH = 6.11, catalyst dose = 0.1 g L, initial CFX = 50 mg L, 180 min reaction time). The integration of machine learning-based modeling and nature-inspired optimization highlights an effective approach for enhancing photocatalytic processes. The results provide a robust framework for optimizing semiconductor-based water treatment technologies, contributing to sustainable environmental remediation strategies.

摘要

抗生素在水生环境中的广泛存在引发了人们对其生态影响以及抗生素耐药菌潜在发展的重大担忧。本研究考察了在太阳辐射下,银掺杂氧化锌(Ag-ZnO)纳米颗粒对头孢呋辛(CFX)的光催化降解作用。采用溶胶-凝胶法合成了不同银掺杂百分比(1%、2%、2.5%和3%重量比)的Ag-ZnO纳米颗粒,随后使用XRD、SEM-EDS、ATR-FTIR和紫外-可见光谱对其进行结构和光学表征。光催化实验表明,2%重量比的Ag-ZnO表现出最高的降解效率,这归因于电子-空穴复合的减少以及在可见光谱中光吸收的增强。表征结果提供了关于所制备催化剂的形态、结构和组成特征的有价值信息,强调了不同银负载量对其性能的影响。光学研究表明,带隙值从3.15 eV(ZnO)降至3.01 eV(Ag:ZnO,2%)。此外,对光降解动力学进行了分析,并进行了清除剂测试以考察活性物种的作用,从而全面了解光催化机理。根据动力学研究,CFX的降解遵循准一级动力学,并且羟基自由基(˙OH)被确定为驱动光降解过程的主要活性物种。为了优化降解过程,采用了决策树与最小二乘增强(DT_LSBOOST)算法相结合的方法,基于反应时间、催化剂用量、初始CFX浓度、pH值和银掺杂百分比等关键操作参数对CFX光降解效率进行建模和预测。优化后的DT_LSBOOST模型显示出高预测精度(>0.9996),均方根误差最小(RMSE<0.88)。此外,实施了蜻蜓算法(DA)以确定最佳反应条件,在优化条件(pH = 6.11,催化剂剂量 = 0.1 g/L,初始CFX = 50 mg/L,反应时间180分钟)下实现了经实验验证的84.25%的降解率。基于机器学习的建模与受自然启发的优化方法的结合突出了一种增强光催化过程的有效途径。研究结果为优化基于半导体的水处理技术提供了一个有力的框架,有助于实现可持续的环境修复策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f74/12447875/b7be75c47fb1/d5ra04447b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验