Benhmammouch Saloua, Borowczyk Coraline, Pierrot-Blanchet Clara, Barouillet Thibault, Murcy Florent, Dussaud Sébastien, Blanc Marina, Blériot Camille, Örd Tiit, Habbouche Lama, Vaillant Nathalie, Gerber Yohan, Cochain Clément, Gautier Emmanuel L, Ginhoux Florent, Thorp Edward B, Biessen Erik A L, Sluimer Judith C, Bodoy Susanna, Palacin Manuel, Bailly-Maitre Béatrice, Kaikkonen Minna U, Yvan-Charvet Laurent
Institut National de la Santé et de la Recherche Médicale U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire, Atip-Avenir, Institut Hospitalo-Universitaire (IHU) RespirERA, Nice, France.
Sorbonne Université, INSERM, UMR_S 1166 ICAN, Paris, France.
Nat Metab. 2025 Sep;7(9):1924-1938. doi: 10.1038/s42255-025-01354-2. Epub 2025 Sep 22.
Atherosclerosis is a life-threatening condition characterized by chronic inflammation of the arterial wall. Atherosclerotic plaque macrophages are key players at the site of disease, where metabolic reprogramming dictates the progression of pathogenesis. Here we show that reduced macrophage glutaminase activity is related to glutaminase (GLS)-1 and not GLS2 expression. While glutamine synthetase serves as a metabolic rheostat controlling nutrient flux into cells in vitro, macrophage restorative functions in the context of atherosclerosis relies more heavily on glutamine influx. Enhanced glutamine flux is largely mediated by the SLC7A7 exchanger in macrophages: Slc7a7-silenced macrophages have reduced glutamine influx and GLS1-dependent glutaminolysis, impeding downstream signalling involved in macrophage restorative functions. In vivo, macrophage-specific deletion of Slc7a7 accelerates atherosclerosis in mice with more complex necrotic core composition. Finally, cell-intrinsic regulation of glutaminolysis drives macrophage metabolic and transcriptional rewiring in atherosclerosis by diverting exogenous Gln flux to balance remodelling and restorative functions. Thus, we uncover a role of SLC7A7-dependent glutamine uptake upstream of glutaminolysis in atherosclerotic plaque development and stability.
动脉粥样硬化是一种危及生命的疾病,其特征是动脉壁的慢性炎症。动脉粥样硬化斑块巨噬细胞是疾病发生部位的关键因素,在该部位,代谢重编程决定了发病机制的进展。在此,我们表明巨噬细胞谷氨酰胺酶活性降低与谷氨酰胺酶(GLS)-1而非GLS2的表达有关。虽然谷氨酰胺合成酶在体外作为一种代谢调节器控制营养物质流入细胞,但在动脉粥样硬化背景下巨噬细胞的修复功能更依赖于谷氨酰胺流入。增强的谷氨酰胺通量在很大程度上由巨噬细胞中的SLC7A7交换体介导:沉默Slc7a7的巨噬细胞谷氨酰胺流入减少且GLS1依赖性谷氨酰胺分解代谢减少,从而阻碍了参与巨噬细胞修复功能的下游信号传导。在体内,巨噬细胞特异性缺失Slc7a7会加速小鼠动脉粥样硬化,其坏死核心成分更复杂。最后,谷氨酰胺分解代谢的细胞内在调节通过转移外源性谷氨酰胺通量来平衡重塑和修复功能,从而驱动动脉粥样硬化中巨噬细胞的代谢和转录重编程。因此,我们揭示了在动脉粥样硬化斑块发展和稳定性中,谷氨酰胺分解代谢上游的SLC7A7依赖性谷氨酰胺摄取的作用。