Greene Kai Su, Choi Annette, Yang Nianhui, Chen Matthew, Li Ruizhi, Qiu Yijian, Ezzatpour Shahrzad, Rojas Katherine S, Shen Jonathan, Wilson Kristin F, Katt William P, Aguilar Hector C, Lukey Michael J, Whittaker Gary R, Cerione Richard A
Department of Molecular Medicine, Cornell University, Ithaca, New York, USA.
Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA.
J Biol Chem. 2025 Jan;301(1):108063. doi: 10.1016/j.jbc.2024.108063. Epub 2024 Dec 9.
Understanding the fundamental biochemical and metabolic requirements for the replication of coronaviruses within infected cells is of notable interest for the development of broad-based therapeutic strategies, given the likelihood of the emergence of new pandemic-potential virus species, as well as future variants of SARS-CoV-2. Here we demonstrate members of the glutaminase family of enzymes (GLS and GLS2), which catalyze the hydrolysis of glutamine to glutamate (i.e., the first step in glutamine metabolism), play key roles in coronavirus replication in host cells. Using a range of human seasonal and zoonotic coronaviruses, we show three examples where GLS expression increases during coronavirus infection of host cells, and another where GLS2 is upregulated. The viruses hijack the metabolic machinery responsible for glutamine metabolism to generate the building blocks for biosynthetic processes and satisfy the bioenergetic requirements demanded by the "glutamine addiction" of virus-infected cells. We demonstrate that genetic silencing of glutaminase enzymes reduces coronavirus infection and that newer members of two classes of allosteric inhibitors targeting these enzymes, designated as SU1, a pan-GLS/GLS2 inhibitor, and UP4, a specific GLS inhibitor, block viral replication in epithelial cells. Moreover, treatment of SARS-CoV-2 infected K18-human ACE2 transgenic mice with SU1 resulted in their complete survival compared to untreated control animals, which succumbed within 10 days post-infection. Overall, these findings highlight the importance of glutamine metabolism for coronavirus replication in human cells and mice and show that glutaminase inhibitors can block coronavirus infection and thereby may represent a novel class of broad-based anti-viral drug candidates.
鉴于有可能出现具有大流行潜力的新病毒种类以及SARS-CoV-2的未来变体,了解冠状病毒在受感染细胞内复制的基本生化和代谢需求对于制定广泛的治疗策略具有显著意义。在此,我们证明了谷氨酰胺酶家族的成员(GLS和GLS2),它们催化谷氨酰胺水解为谷氨酸(即谷氨酰胺代谢的第一步),在冠状病毒在宿主细胞中的复制中发挥关键作用。使用一系列人类季节性冠状病毒和人畜共患冠状病毒,我们展示了三个例子,其中在宿主细胞感染冠状病毒期间GLS表达增加,以及另一个GLS2上调的例子。这些病毒劫持负责谷氨酰胺代谢的代谢机制,以产生生物合成过程所需的构件,并满足病毒感染细胞的“谷氨酰胺成瘾”所要求的生物能量需求。我们证明,谷氨酰胺酶的基因沉默可减少冠状病毒感染,并且两类靶向这些酶的变构抑制剂的新成员,即泛GLS/GLS2抑制剂SU1和特异性GLS抑制剂UP4,可阻断上皮细胞中的病毒复制。此外,用SU1治疗感染SARS-CoV-2的K18-人ACE2转基因小鼠,与未治疗的对照动物相比,它们完全存活,未治疗的对照动物在感染后10天内死亡。总体而言,这些发现突出了谷氨酰胺代谢对冠状病毒在人类细胞和小鼠中复制的重要性,并表明谷氨酰胺酶抑制剂可阻断冠状病毒感染,因此可能代表一类新型的广泛抗病毒候选药物。