Fu Lishan, Cui Ning, Zhang Feng, Wang Jisheng, Qiu Ao, Guan Baolu
Opt Express. 2025 Aug 11;33(16):34294-34302. doi: 10.1364/OE.570069.
Vertical-cavity surface-emitting lasers (VCSELs) demonstrate significant potential for all-optical coherent population trapping (CPT) atomic clocks due to their compact size and high integration capabilities. However, the effectiveness of atomic clocks is significantly limited by the polarization instability and broad linewidth of a VCSEL. Moreover, the discrete phase noise induced by mode competition not only induces polarization instability, but also constitutes the fundamental physical constraint on achieving narrow-linewidth laser output. Therefore, pursuing both narrow linewidth and high polarization stability represents interdependent and mutually reinforcing objectives. In order to address these fundamental constraints, a guide-mode resonant subwavelength grating coupling cavity VCSEL (GC-VCSEL) is proposed in this study, which is different from traditional surface gratings. The design employs a grating waveguide-coupled cavity to selectively amplify transverse electric (TE) modes while suppressing transverse magnetic (TM) modes, coupled with a dual-cavity optical feedback system to compress linewidth in the cold cavity of the VCSEL. Experimental verification confirms that GC-VCSEL can achieve a polarization suppression ratio of nearly 30 dB in high temperature environments. In addition, the device exhibits stable single-mode performance over both temperature and current variations. Even at 80 °C, which is required for chip-scale atomic clocks (CSACs), GC-VCSEL maintains an excellent current wavelength coefficient of 0.33 nm/mA.
垂直腔面发射激光器(VCSEL)由于其紧凑的尺寸和高集成能力,在全光相干布居囚禁(CPT)原子钟方面展现出巨大潜力。然而,VCSEL的偏振不稳定性和宽线宽严重限制了原子钟的效能。此外,模式竞争引起的离散相位噪声不仅会导致偏振不稳定,也是实现窄线宽激光输出的基本物理限制。因此,追求窄线宽和高偏振稳定性是相互依存、相辅相成的目标。为了解决这些基本限制,本研究提出了一种与传统表面光栅不同的导模共振亚波长光栅耦合腔VCSEL(GC-VCSEL)。该设计采用光栅波导耦合腔来选择性放大横电(TE)模式,同时抑制横磁(TM)模式,并结合双腔光反馈系统在VCSEL的冷腔中压缩线宽。实验验证表明,GC-VCSEL在高温环境下可实现近30 dB的偏振抑制比。此外,该器件在温度和电流变化时均表现出稳定的单模性能。即使在芯片级原子钟(CSAC)所需的80°C温度下,GC-VCSEL仍保持0.33 nm/mA的优异电流波长系数。