Liu Dan, Zhang MingLong, Nie Ying, Li XingNan, Liu WanQuan, Yue LiLing, Meng XianDong, Li PengHui, Wang LuLu, Mei QingBu
Department of Medical Genetics, School of Basic Medicine, Qiqihar Medical University, Heilongjiang, 161006, China.
Department of Foreign Language, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
Open Med (Wars). 2025 Sep 15;20(1):20251247. doi: 10.1515/med-2025-1247. eCollection 2025.
Cancer stemness, hypoxia, and glycolysis collectively influence colorectal cancer (CRC) progression. However, the intricate relationships among these factors remain incompletely understood.
This study (1) explored hypoxia and glycolysis-related genes (HGRGs) in CRC by mRNA stemness index (mRNAsi), analyzed the gene expression profiles from Gene Expression Omnibus and The Cancer Genome Atlas (TCGA) databases, (2) established a Cox-prognostic model based on single-sample gene set enrichment analysis, differentially expressed gene analysis, weighted gene co-expression network analysis, and Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analyses, and (3) assessed the predictive accuracy of the model. Decision curve analysis (DCA) was employed to determine the clinical utility of the model.
Ten HGRGs were selected based on mRNAsi to create the LASSO model. High-risk CRC patients in the TCGA dataset displayed unfavorable clinical outcomes and responses to immunotherapy. Consensus cluster analysis revealed two distinct colon adenocarcinoma/rectal adenocarcinoma clusters, with patients in cluster 2 having a worse prognosis compared to patients in cluster 1. A five-gene prognostic nomogram was developed through univariate and multivariate Cox regression analyses, with DCA confirming its accuracy.
This innovative prognostic model, incorporating , , , , and , is highly accurate in predicting patient survival.
癌症干性、缺氧和糖酵解共同影响结直肠癌(CRC)的进展。然而,这些因素之间的复杂关系仍未完全了解。
本研究(1)通过mRNA干性指数(mRNAsi)探索CRC中与缺氧和糖酵解相关的基因(HGRGs),分析来自基因表达综合数据库和癌症基因组图谱(TCGA)数据库的基因表达谱,(2)基于单样本基因集富集分析、差异表达基因分析、加权基因共表达网络分析以及最小绝对收缩和选择算子(LASSO)和Cox回归分析建立Cox预后模型,(3)评估该模型的预测准确性。采用决策曲线分析(DCA)来确定该模型的临床实用性。
基于mRNAsi选择了10个HGRGs来创建LASSO模型。TCGA数据集中的高危CRC患者显示出不良的临床结局和对免疫治疗的反应。共识聚类分析揭示了两个不同的结肠腺癌/直肠腺癌聚类,聚类2中的患者预后比聚类1中的患者更差。通过单变量和多变量Cox回归分析建立了一个五基因预后列线图,DCA证实了其准确性。
这个整合了[此处原文缺失具体基因名称]的创新预后模型在预测患者生存方面具有高度准确性。