Novaes-Silva Maria C, Rodríguez-Hakim Mariana, Thompson Benjamin R, Wagner Norman J, Hermans Eline, Dupont Lieven J, Vermant Jan
Department of Materials, ETH Zürich, Zürich, 8093, Switzerland.
Departamento de Física Fundamental, Universidad Nacional de Educación a Distancia, Las Rozas de Madrid, E28232, Spain.
Sci Adv. 2025 Sep 26;11(39):eadx6034. doi: 10.1126/sciadv.adx6034. Epub 2025 Sep 24.
Pulmonary surfactants reduce the work of breathing, enhance compliance, and prevent alveolar collapse. Yet, their role extends beyond that of a simple surfactant; otherwise, exogenous surfactant therapy would fully restore compliance in acute respiratory distress syndrome (ARDS) by increasing surface concentration alone. Here, we show that interfacial microstructure and mechanics, regulated by spontaneous or ventilator-induced sighs, play a critical role. Using interfacial rheometry and structural analysis, including in situ neutron reflectometry and Raman-based techniques, we find that sighs enrich the air-liquid interface with saturated lipids, triggering structural rearrangements. This periodic "reset" transforms the layer into a mechanically robust, DPPC-rich film, where compressional hardening counteracts tension. These findings highlight the nonequilibrium dynamics of surfactant layers and underscore the importance of interfacial compressive stresses, not just tension, in governing lung mechanics. This mechanism helps sustain low interfacial stress and high compliance, offering mechanistic insight to guide protective ventilation strategies upon lung trauma and possibilities to optimize surfactant-enabled pulmonary treatment.
肺表面活性剂可减少呼吸功、增强顺应性并防止肺泡塌陷。然而,它们的作用远不止于简单的表面活性剂;否则,外源性表面活性剂疗法仅通过增加表面浓度就能完全恢复急性呼吸窘迫综合征(ARDS)的顺应性。在此,我们表明,由自发或呼吸机诱导的叹息所调节的界面微观结构和力学起着关键作用。通过界面流变学和结构分析,包括原位中子反射测量和基于拉曼的技术,我们发现叹息使气液界面富含饱和脂质,引发结构重排。这种周期性的“重置”将该层转变为机械坚固、富含二棕榈酰磷脂酰胆碱(DPPC)的薄膜,其中压缩硬化抵消了张力。这些发现突出了表面活性剂层的非平衡动力学,并强调了界面压缩应力而非仅仅是张力在控制肺力学中的重要性。这一机制有助于维持低界面应力和高顺应性,为指导肺创伤后的保护性通气策略提供了机制性见解,并为优化基于表面活性剂的肺部治疗提供了可能性。