García-Salaberri Pablo A, van Eijk Lonneke, Bangay William, Ferner Kara J, Ha Mee H, Moore Michael, Perea Ivan, Kusoglu Ahmet, Secanell Marc, Das Prodip K, Firas Nausir, Pylypenko Svitlana, Novy Melissa, Yandrasits Michael, Saha Suvash C, Bayat Ali, Litster Shawn, Zenyuk Iryna V
Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain.
ACS Appl Energy Mater. 2025 Sep 11;8(18):13050-13121. doi: 10.1021/acsaem.5c01989. eCollection 2025 Sep 22.
Proton exchange membrane water electrolyzers (PEMWEs) are expected to play a crucial role in the global green energy transition during the 21st century. They provide a versatile and sustainable solution for generating hydrogen with very high purity in combination with renewable energies, such as solar and wind. Despite their promise, PEMWEs face several critical problems, including high costs, performance limitations, and durability challenges, particularly at low iridium (Ir) loading on the anode. Advancing next-generation PEMWEs requires extensive work on materials engineering of all cell components, including the catalyst layer (CL), membrane, porous transport layer (PTL), bipolar plate (BPP), and gasket. This task must be performed with the complementary contribution of different modeling and characterization techniques. This review presents a critical perspective from academia, research centers, and industry, mapping main developments, remaining gaps, and strategic pathways to advance PEMWE technology. A focus is devoted to key aspects, such as operation at low Ir loading, membrane durability, multiscale transport layers, porous and non-porous flow fields, multiphysics modeling, and multipurpose characterization techniques, which are thoroughly discussed. By unifying these topics, this review provides readers with the essential knowledge to grasp current developments and tackle tomorrow's challenges in PEMWE engineering.
质子交换膜水电解槽(PEMWE)有望在21世纪全球绿色能源转型中发挥关键作用。它们为结合太阳能和风能等可再生能源生产高纯度氢气提供了一种通用且可持续的解决方案。尽管前景广阔,但PEMWE面临着几个关键问题,包括成本高、性能限制和耐久性挑战,尤其是在阳极铱(Ir)负载量较低时。推进下一代PEMWE需要对所有电池组件进行广泛的材料工程研究,包括催化剂层(CL)、膜、多孔传输层(PTL)、双极板(BPP)和垫片。这项任务必须借助不同建模和表征技术的互补作用来完成。本综述从学术界、研究中心和行业的角度进行了批判性分析,梳理了推进PEMWE技术的主要进展、尚存差距和战略途径。重点关注了关键方面,如低Ir负载下的运行、膜耐久性、多尺度传输层、多孔和无孔流场、多物理场建模以及多用途表征技术,并进行了深入讨论。通过整合这些主题,本综述为读者提供了必要的知识,以了解PEMWE工程的当前进展并应对未来挑战。