Nath Subhradip, Sengupta Kaushik
Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India.
Homi Bhabha National Institute, Mumbai, Maharashtra, India.
Subcell Biochem. 2025;115:143-162. doi: 10.1007/978-3-032-00537-3_6.
The filamentous nuclear lamina network is predominantly made up of lamin proteins, which play pivotal roles in maintaining nuclear architecture, chromatin structure, mechanotransduction and various other nuclear processes. Among the lamin proteins, A type is the principal mechanical component of the nucleus and controls gene expression via direct interactions with chromatin and chromatin modulator proteins. Mutations in the LMNA gene cause a plethora of diseases termed laminopathies, including various cardiac and muscular ailments, by disrupting nuclear integrity and mechanotransduction signalling. These mutations also alter chromatin organisation and epigenetic landscape, tantamount to compromised cellular homeostasis. In this chapter, we elaborate on lamin A's molecular structure, assembly dynamics and its role in nuclear mechanotransduction and chromatin maintenance. Additionally, we highlighted the pathological consequences of lamin A dysfunction and discussed emerging approaches aimed at rationalising the cellular- and tissue-specific effects during laminopathies.
丝状核纤层网络主要由核纤层蛋白组成,这些蛋白在维持核结构、染色质结构、机械转导及各种其他核过程中发挥着关键作用。在核纤层蛋白中,A型是细胞核的主要机械成分,通过与染色质和染色质调节蛋白直接相互作用来控制基因表达。LMNA基因的突变会破坏核完整性和机械转导信号,从而导致大量被称为核纤层病的疾病,包括各种心脏和肌肉疾病。这些突变还会改变染色质组织和表观遗传格局,等同于细胞稳态受损。在本章中,我们详细阐述了A型核纤层蛋白的分子结构、组装动力学及其在核机械转导和染色质维持中的作用。此外,我们强调了A型核纤层蛋白功能障碍的病理后果,并讨论了旨在合理化核纤层病期间细胞和组织特异性效应的新方法。