Suppr超能文献

RAPDOR:使用詹森-香农距离对复杂蛋白质组学数据集进行计算分析。

RAPDOR: Using Jensen-Shannon Distance for the computational analysis of complex proteomics datasets.

作者信息

Hemm Luisa, Rabsch Dominik, Ropp Halie Rae, Reimann Viktoria, Gerth Philip, Bartel Jürgen, Brenes-Álvarez Manuel, Maaß Sandra, Becher Dörte, Hess Wolfgang R, Backofen Rolf

机构信息

Genetics and Experimental Bioinformatics, of Biology, University of Freiburg, Freiburg, Germany.

Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany.

出版信息

Nat Commun. 2025 Sep 26;16(1):8527. doi: 10.1038/s41467-025-64086-7.

Abstract

The computational analysis of large proteomics datasets from gradient profiling or spatially resolved proteomics is often as crucial as experimental design. We present RAPDOR, a tool for intuitive analyzing and visualizing such datasets, based on the Jensen-Shannon distance and analysis of similarities between replicates, applied to the identification of RNA-binding proteins (RBPs) and spatial proteomics. First, we examine the in-gradient distribution profiles of protein complexes with or without RNase treatment (GradR) to identify RBPs in the cyanobacterium Synechocystis 6803. RBPs play pivotal regulatory and structural roles. Although numerous RBPs are well characterized, the complete set of RBPs remains unknown for any species. RAPDOR identifies 165 potential RBPs, including ribosomal proteins, RNA-modifying enzymes, and proteins not previously associated with RNA binding. High-ranking putative RBPs, such as ribosome hibernation factor LrtA/RaiA, phosphoglucomutase Sll0726, antitoxin Ssl2245, and preQ(1) synthase QueF predicted by RAPDOR but not the TriPepSVM algorithm, are experimentally validated, indicating the existence of uncharacterized RBP domains. These data are available online, providing a resource for RNase-sensitive protein complexes in cyanobacteria. We then show by reanalyzing existing datasets that RAPDOR effectively examines the intracellular redistribution of proteins upon growth factor stimulation. RAPDOR is a generic, non-parametric tool for analyzing highly complex datasets.

摘要

对来自梯度分析或空间分辨蛋白质组学的大型蛋白质组学数据集进行计算分析,其重要性往往与实验设计相当。我们展示了RAPDOR,这是一种基于詹森-香农距离和复制品间相似性分析,用于直观分析和可视化此类数据集的工具,应用于RNA结合蛋白(RBP)的鉴定和空间蛋白质组学。首先,我们研究了经或未经核糖核酸酶处理的蛋白质复合物的梯度内分布谱(GradR),以鉴定集胞藻6803中的RBP。RBP发挥着关键的调节和结构作用。尽管许多RBP已得到充分表征,但任何物种的RBP完整集仍然未知。RAPDOR鉴定出165种潜在的RBP,包括核糖体蛋白、RNA修饰酶以及以前未与RNA结合相关联的蛋白质。RAPDOR预测但TriPepSVM算法未预测到的高排名假定RBP,如核糖体休眠因子LrtA/RaiA、磷酸葡萄糖变位酶Sll0726、抗毒素Ssl2245和preQ(1)合酶QueF,经过实验验证,表明存在未表征的RBP结构域。这些数据可在线获取,为蓝藻中对核糖核酸酶敏感的蛋白质复合物提供了资源。然后,我们通过重新分析现有数据集表明,RAPDOR有效地检测了生长因子刺激后蛋白质的细胞内重新分布。RAPDOR是一种用于分析高度复杂数据集的通用非参数工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed13/12475003/9fd2ed26653c/41467_2025_64086_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验