Dehghanipour M, Kumar Anjan, Kanjariya Prakash, Manjula M, Kalia Rishiv, Al-Hasnaawei Shaker, Jayalakshmi D S, Gautam Apurav, Ramaiah Gurumurthy
Advanced Nano and Engineering MBM Innovation Lab, P. O. Box. 78164-18799, Sirjan, Iran.
Department of Electronics and Communication Engineering, GLA University, Mathura, 281406, India.
Sci Rep. 2025 Sep 26;15(1):33048. doi: 10.1038/s41598-025-08864-9.
This study examines the adsorption of a nitrosourea (NU) drug molecule onto pristine and doped T-graphene (TG) nanosheets, specifically those doped with boron (BTG) and aluminum (AlTG), utilizing density functional theory (DFT) at the M06-2X/6-31 + G(d,p) level of theory. We investigated the geometric, electronic, and energetic properties of the resulting complexes, focusing on adsorption energies, HOMO-LUMO gaps (E), molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM). Our findings indicate that aluminum doping significantly enhances the adsorption of NU onto the TG nanosheet, exhibiting strong chemisorption as evidenced by a high adsorption energy (E) of - 41.46 kcal mol and substantial charge transfer. However, this high adsorption energy results in a very lengthy desorption time of 2.3 × 10 s. In contrast, boron doping increases the E to a more manageable level (- 14.91 kcal mol), leading to a recovery time of 8.3 × 10 s, which is advantageous from a drug delivery perspective. Frontier molecular orbitals analysis revealed that the most prominent E change upon adsorption of NU occurs in the case of BTG with a 10.46% reduction. While the variations of E for TG-NU and AlTG-NU are - 1.31% and 5.20%, respectively. NBO analysis confirmed substantial donor-acceptor interactions in the AlTG-NU complex, while QTAIM indicated the presence of partially covalent interactions. Pristine TG and BTG exhibited weaker interactions with NU; however, the bonding nature remained partially covalent in both cases. The calculated recovery times further suggest that BTG provides a more favorable drug release profile compared to TG and AlTG. This study highlights the potential of boron-doped TG as an effective nanocarrier for drug delivery, underscoring the essential role of doping in tailoring the electronic and adsorption properties of graphene-based materials.
本研究利用密度泛函理论(DFT)在M06 - 2X/6 - 31 + G(d,p)理论水平下,研究了亚硝基脲(NU)药物分子在原始和掺杂的T型石墨烯(TG)纳米片上的吸附情况,特别是那些掺杂了硼(BTG)和铝(AlTG)的纳米片。我们研究了所得配合物的几何、电子和能量性质,重点关注吸附能、最高占据分子轨道-最低未占据分子轨道能隙(E)、分子静电势(MEP)、自然键轨道(NBO)分析以及分子中的原子量子理论(QTAIM)。我们的研究结果表明,铝掺杂显著增强了NU在TG纳米片上的吸附,表现出强烈的化学吸附,吸附能(E)高达 - 41.46 kcal/mol且有大量电荷转移。然而,这种高吸附能导致解吸时间非常长,达到2.3×10 s。相比之下,硼掺杂将E提高到更易于控制的水平( - 14.91 kcal/mol),导致恢复时间为8.3×10 s,从药物递送的角度来看这是有利的。前沿分子轨道分析表明,吸附NU时E的最显著变化发生在BTG情况下,降低了10.46%。而TG - NU和AlTG - NU的E变化分别为 - 1.31%和5.20%。NBO分析证实了AlTG - NU配合物中存在大量供体 - 受体相互作用,而QTAIM表明存在部分共价相互作用。原始TG和BTG与NU的相互作用较弱;然而,在这两种情况下键合性质仍部分为共价键。计算得到的恢复时间进一步表明,与TG和AlTG相比,BTG提供了更有利的药物释放曲线。本研究突出了硼掺杂TG作为药物递送有效纳米载体的潜力,强调了掺杂在调整基于石墨烯材料的电子和吸附性质方面的重要作用。