Suppr超能文献

利用离子迁移谱和计算化学解析蛋氨酸的热分解及化学电离

Unraveling the thermal decomposition and chemical ionization of methionine using ion mobility spectrometry and computational chemistry.

作者信息

Amiri Mina, Vahedpour Morteza, Bahrami Hamed, Douroudgari Hamed

机构信息

Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran.

出版信息

Sci Rep. 2025 Sep 26;15(1):33196. doi: 10.1038/s41598-025-18103-w.

Abstract

Methionine, an essential amino acid, plays a crucial role in various biological processes and exhibits antioxidant properties, significantly impacting the health and well-being of humans, livestock, poultry, and fisheries. This study focuses on the thermal decomposition products of methionine utilizing ion mobility spectrometry (IMS) in conjunction with computational chemistry. This research focuses on analyzing the thermal decomposition products of methionine using ion mobility spectrometry (IMS) combined with computational chemistry. The IMS spectra of methionine were acquired under normal conditions and after subjecting the samples to elevated temperatures (280 °C) for different durations (5, 10, and 15 s) prior to analysis. By comparing the IMS spectra with those of pure compounds, analyzing changes in peak intensities over elapsed time, and employing a two-reference method to predict the masses of ionic species, the study aimed to identify and characterize the thermal degradation products of methionine at this temperature. Density functional theory (DFT) was employed to further interpret the IMS spectra to predict the fragments generated during decomposition. To achieve this, the decomposition pathways of methionine and protonated methionine from the N, O, and S centers are considered comprehensively. Consequently, four potential energy surfaces (PESs) are constructed with suitable details. The obtained PESs revealed that the saddle points and produced fragments in protonated molecules are more stable than neutral molecules compared to the respective reactant. This led us to conclude that the initial high impact between the hydronium ion and methionine plays a crucial role in the fragmentation process. The theoretical findings align well with the IMS spectra. Moreover, the methodology employed in this study can be applied to exactly interpret the IMS spectra of any similar molecular system.

摘要

甲硫氨酸是一种必需氨基酸,在各种生物过程中发挥着关键作用,并具有抗氧化特性,对人类、家畜、家禽和渔业的健康与福祉有着重大影响。本研究利用离子迁移谱(IMS)结合计算化学,聚焦于甲硫氨酸的热分解产物。该研究着重分析甲硫氨酸的热分解产物,采用离子迁移谱(IMS)与计算化学相结合的方法。在正常条件下以及将样品在高温(280°C)下处理不同时长(5、10和15秒)后进行分析,获取甲硫氨酸的IMS光谱。通过将IMS光谱与纯化合物的光谱进行比较,分析峰强度随时间的变化,并采用双参考方法预测离子物种的质量,该研究旨在识别和表征在此温度下甲硫氨酸的热降解产物。运用密度泛函理论(DFT)进一步解释IMS光谱,以预测分解过程中产生的碎片。为此,全面考虑了甲硫氨酸和质子化甲硫氨酸从N、O和S中心的分解途径。因此,构建了四个具有适当细节的势能面(PESs)。所获得的PESs表明,与各自的反应物相比,质子化分子中的鞍点和产生的碎片比中性分子更稳定。这使我们得出结论,水合氢离子与甲硫氨酸之间最初的高碰撞在碎片化过程中起着关键作用。理论研究结果与IMS光谱吻合良好。此外,本研究中采用的方法可用于准确解释任何类似分子系统的IMS光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验