Suppr超能文献

通过多通循环离子迁移谱法精确测量碰撞截面

Accurate Collisional Cross Section Measurement by Multipass Cyclic Ion Mobility Spectrometry.

作者信息

Xia Chaoshuang, Mernie Elias, Zaia Joseph, Costello Catherine E, Lin Cheng

机构信息

Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States.

Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.

出版信息

Anal Chem. 2024 Jul 23;96(29):11959-11968. doi: 10.1021/acs.analchem.4c01758. Epub 2024 Jul 11.

Abstract

Ion mobility-mass spectrometry (IM-MS) is a powerful analytical tool for structural characterization. IM measurement provides collision cross section (CCS) values that facilitate analyte identification. While CCS values can be directly calculated from mobility measurements obtained using drift tube ion mobility spectrometry (DT-IMS), this method has limited mobility resolution due to the practical constraints on the length of the ion drift path. Consequently, DT-IMS cannot differentiate analytes with similar mobilities or resolve fine mobility features of individual ions. Cyclic IMS (cIMS) instruments leverage a cyclic path enabled by traveling wave ion mobility (TWIM) technology and offer increased mobility solution to address this challenge. While TWIM devices must first be calibrated to enable CCS measurements, current calibration strategies are primarily tailored for single-pass analyses. This preference is partly attributed to the challenges associated with multipass calibration methods, which require both calibrants and analytes to experience the same number of passes. Achieving this consistency can be complicated due to factors like peak splitting and diffusion, and may not be feasible for online IM-MS analyses. A recent report employed average ion velocities obtained from multiple measurements under different separation pathlengths as a path length-independent metric for CCS calibration. However, the ability to exploit this averaging approach is limited by observed variation in ion drift time/velocity in these measurements. In this study, we introduce a novel calibration strategy designed for multipass cIMS analyses, directly targeting the root cause for the path length- and mobility-dependent variations in ion drift time. With this method, we demonstrate that CCS values derived from multipass measurements closely align with those obtained from single-pass analyses, with an average deviation of 0.1%. We apply this method to characterize four isomeric trisaccharides. Our approach not only results in excellent agreement between our measured CCS values and the reported CCS values, with an average difference of only 0.5%, but also allows us to effectively identify subtle mobility characteristics of each compound and determine their respective CCS values. This level of detail and accuracy was previously unattainable using DT-IMS or single-pass cIMS measurements. We developed an algorithm for reconstructing arrival time distribution in cases where wrap-around has resulted in peak splitting. Collectively, the new calibration strategy and the reconstruction procedure maintain reproducibility and precision in CCS measurements while largely eliminating the need for meticulous selection of separation times. We expect that our method will empower researchers to harness the high mobility resolution offered by multipass cIMS analyses without compromising the accuracy of CCS measurement, making it appropriate for straightforward use across a wide range of applications.

摘要

离子淌度质谱(IM-MS)是一种用于结构表征的强大分析工具。IM测量提供的碰撞截面(CCS)值有助于分析物的鉴定。虽然CCS值可以从使用漂移管离子淌度光谱法(DT-IMS)获得的淌度测量值直接计算得出,但由于离子漂移路径长度的实际限制,该方法的淌度分辨率有限。因此,DT-IMS无法区分具有相似淌度的分析物,也无法解析单个离子的精细淌度特征。循环IM(cIMS)仪器利用行波离子淌度(TWIM)技术实现的循环路径,并提供更高的淌度分辨率来应对这一挑战。虽然TWIM设备必须首先进行校准以实现CCS测量,但目前的校准策略主要针对单通道分析。这种偏好部分归因于与多通道校准方法相关的挑战,多通道校准方法要求校准剂和分析物经历相同的通道数。由于峰分裂和扩散等因素,实现这种一致性可能会很复杂,并且对于在线IM-MS分析可能不可行。最近的一份报告采用了在不同分离路径长度下多次测量获得的平均离子速度作为CCS校准的与路径长度无关的指标。然而,利用这种平均方法的能力受到这些测量中观察到的离子漂移时间/速度变化的限制。在本研究中,我们引入了一种专为多通道cIMS分析设计的新型校准策略,直接针对离子漂移时间中与路径长度和淌度相关的变化的根本原因。通过这种方法,我们证明了从多通道测量得出的CCS值与从单通道分析获得的CCS值紧密一致,平均偏差为0.1%。我们应用这种方法来表征四种同分异构三糖。我们的方法不仅使我们测量的CCS值与报告的CCS值之间具有出色的一致性,平均差异仅为0.5%,而且还使我们能够有效地识别每种化合物的细微淌度特征并确定它们各自的CCS值。使用DT-IMS或单通道cIMS测量以前无法达到这种详细程度和准确性。我们开发了一种算法,用于在环绕导致峰分裂的情况下重建到达时间分布。总体而言,新的校准策略和重建程序在CCS测量中保持了可重复性和精度,同时在很大程度上消除了对精心选择分离时间的需求。我们预计,我们的方法将使研究人员能够利用多通道cIMS分析提供的高淌度分辨率,而不会影响CCS测量的准确性,使其适用于广泛的应用场景。

相似文献

1
Accurate Collisional Cross Section Measurement by Multipass Cyclic Ion Mobility Spectrometry.
Anal Chem. 2024 Jul 23;96(29):11959-11968. doi: 10.1021/acs.analchem.4c01758. Epub 2024 Jul 11.
2
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.
Cochrane Database Syst Rev. 2015 Jul 27;2015(7):MR000042. doi: 10.1002/14651858.MR000042.pub2.
7
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

引用本文的文献

1
Multipass CCS Refiner: A Web Application for Accurate Collision Cross Section Calibration in Cyclic Ion Mobility-Mass Spectrometry.
J Am Soc Mass Spectrom. 2025 Sep 3;36(9):2000-2004. doi: 10.1021/jasms.5c00199. Epub 2025 Aug 19.
2
A Spatial Metabolomics Annotation Workflow Leveraging Cyclic Ion Mobility and Machine Learning-Predicted Collision Cross Sections.
J Am Soc Mass Spectrom. 2025 Jun 4;36(6):1386-1394. doi: 10.1021/jasms.5c00090. Epub 2025 May 21.
3
Multi-Pass Arrival Time Correction in Cyclic Ion Mobility Mass Spectrometry for Imaging and Shotgun Lipidomics.
ACS Meas Sci Au. 2024 Dec 27;5(1):109-119. doi: 10.1021/acsmeasuresciau.4c00077. eCollection 2025 Feb 19.

本文引用的文献

1
General Method to Obtain Collision Cross-Section Values in Multipass High-Resolution Cyclic Ion Mobility Separations.
Anal Chem. 2023 May 23;95(20):8028-8035. doi: 10.1021/acs.analchem.3c00919. Epub 2023 May 10.
2
Unwrapping Wrap-around in Gas (or Liquid) Chromatographic Cyclic Ion Mobility-Mass Spectrometry.
Anal Chem. 2022 Aug 16;94(32):11113-11117. doi: 10.1021/acs.analchem.2c02351. Epub 2022 Aug 1.
3
An Improved Calibration Approach for Traveling Wave Ion Mobility Spectrometry: Robust, High-Precision Collision Cross Sections.
Anal Chem. 2021 Feb 23;93(7):3542-3550. doi: 10.1021/acs.analchem.0c04948. Epub 2021 Feb 8.
5
Travelling Wave Ion Mobility-Derived Collision Cross Section for Mycotoxins: Investigating Interlaboratory and Interplatform Reproducibility.
J Agric Food Chem. 2020 Sep 30;68(39):10937-10943. doi: 10.1021/acs.jafc.0c04498. Epub 2020 Sep 10.
6
Resolution of Isomeric Mixtures in Ion Mobility Using a Combined Demultiplexing and Peak Deconvolution Technique.
Anal Chem. 2020 Jul 21;92(14):9482-9492. doi: 10.1021/acs.analchem.9b05718. Epub 2020 Jul 6.
7
A Cyclic Ion Mobility-Mass Spectrometry System.
Anal Chem. 2019 Jul 2;91(13):8564-8573. doi: 10.1021/acs.analchem.9b01838. Epub 2019 Jun 12.
8
Recommendations for reporting ion mobility Mass Spectrometry measurements.
Mass Spectrom Rev. 2019 May;38(3):291-320. doi: 10.1002/mas.21585. Epub 2019 Feb 1.
9
Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations.
Chem Commun (Camb). 2018 Oct 25;54(83):11701-11704. doi: 10.1039/c8cc06966b. Epub 2018 Sep 28.
10
Collisional Cross-Sections with T-Wave Ion Mobility Spectrometry without Experimental Calibration.
J Am Soc Mass Spectrom. 2017 Jul;28(7):1282-1292. doi: 10.1007/s13361-017-1669-0. Epub 2017 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验