Suppr超能文献

急性期伴有双相性癫痫发作及晚期弥散减低的急性脑病与长时间热性惊厥的自动鉴别诊断

Automated differentiation of acute encephalopathy with biphasic seizures and late reduced diffusion and prolonged febrile seizures in acute phase.

作者信息

Oguri Masayoshi, Okanishi Tohru, Kuki Ichiro, Hamano Shin-Ichiro, Ueta Ikuya, Nakamura Yuko, Inaba Yuji, Lee Sooyoung, Takanashi Jun-Ichi, Togawa Masami, Onishi Akinari, Maegaki Yoshihiro

机构信息

Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan.

Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan.

出版信息

Sci Rep. 2025 Sep 26;15(1):32948. doi: 10.1038/s41598-025-17828-y.

Abstract

Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is the most common subtype of acute encephalopathy in Japan and is difficult to differentiate from prolonged febrile seizures (PFSs). This study aimed to explore the capability of machine learning to differentiate AESD from PFSs on the basis of early electroencephalogram (EEG) analyses. Sixty one children with AESD (n = 20) or PFS (n = 41) were included. Digital EEG data with bipolar montage collected within 48 h (1-48 h) after seizure onset were analyzed using absolute power spectrum (APS) and phase lag index (PLI) values in each EEG frequency band. The APS values in the theta, alpha, beta, and gamma bands were lower for AESD than those for PFS. By contrast, the mean PLI values for all frequency bands were higher for AESD than for PFS. Machine learning analysis revealed that the APS value in the beta bands provided the highest differentiation accuracy and positive predictive value for AESD (68.8%). The mean APS values across all electrodes in the beta band may be a useful tool for differentiating between early-phase AESD and PFS. This study demonstrates the potential for early automated diagnosis of AESD and PFS using EEG analysis.

摘要

伴有双相性癫痫发作和晚期弥散受限的急性脑病(AESD)是日本最常见的急性脑病亚型,难以与长时间热性惊厥(PFS)相鉴别。本研究旨在探讨基于早期脑电图(EEG)分析,机器学习区分AESD与PFS的能力。纳入了61例患有AESD(n = 20)或PFS(n = 41)的儿童。在癫痫发作开始后48小时内(1 - 48小时)收集的双极导联数字脑电图数据,采用每个脑电图频段的绝对功率谱(APS)和相位滞后指数(PLI)值进行分析。AESD的θ、α、β和γ频段的APS值低于PFS。相比之下,AESD所有频段的平均PLI值高于PFS。机器学习分析显示,β频段的APS值对AESD的区分准确率和阳性预测值最高(68.8%)。β频段所有电极的平均APS值可能是区分早期AESD和PFS的有用工具。本研究证明了使用脑电图分析对AESD和PFS进行早期自动诊断的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验