Fernandes Nuno A T C, Sharma Shivam, Arieira Ana, Hinckel Betina, Silva Filipe, Leal Ana, Carvalho Óscar
Center for Micro-Electro Mechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal.
Department of Orthopaedic Surgery, William Beaumont Hospital, Royal Oak, MI 48067, USA.
Bioengineering (Basel). 2025 Aug 31;12(9):946. doi: 10.3390/bioengineering12090946.
Ultrasonic wave attenuation in biological tissues arises from complex interactions between mechanical, structural, and fluidic properties, making it essential to identify dominant mechanisms for accurate simulation and device design. This work introduces a novel integration of experimentally measured tissue parameters into time-explicit nonlinear acoustic wave simulations, in which the equations are directly solved in the time domain using an explicit solver. This approach captures the full transient waveform without relying on frequency-domain simplifications, offering a more realistic representation of ultrasound propagation in heterogeneous media. The study estimates both sound diffusivity and viscous damping parameters (dynamic and bulk viscosity) for a broad range of ex vivo tissues (skin, adipose tissue, skeletal muscle, trabecular/cortical bone, liver, myocardium, kidney, tendon, ligament, cartilage, and gray/white brain matter). Four regression models (power law, linear, exponential, logarithmic) were applied to characterize their frequency dependence between 0.5 and 5 MHz. Results show that attenuation is more strongly driven by bulk viscosity than dynamic viscosity, particularly in fluid-rich tissues such as liver and myocardium, where compressional damping dominates. The power-law model consistently provided the best fit for all attenuation metrics, revealing a scale-invariant frequency relationship. Tissues such as cartilage and brain showed weaker viscous responses, suggesting the need for alternative modeling approaches. These findings not only advance fundamental understanding of attenuation mechanisms but also provide validated parameters and modeling strategies to improve predictive accuracy in therapeutic ultrasound planning and the design of non-invasive, tissue-specific acoustic devices.
生物组织中的超声波衰减源于机械、结构和流体特性之间的复杂相互作用,因此确定主导机制对于精确模拟和设备设计至关重要。这项工作引入了一种将实验测量的组织参数新颖地整合到时间显式非线性声波模拟中的方法,其中使用显式求解器在时域中直接求解方程。这种方法无需依赖频域简化就能捕捉完整的瞬态波形,能更真实地呈现超声波在非均匀介质中的传播。该研究估计了多种离体组织(皮肤、脂肪组织、骨骼肌、小梁/皮质骨、肝脏、心肌、肾脏、肌腱、韧带、软骨以及脑灰质/白质)的声扩散率和粘性阻尼参数(动态粘度和体积粘度)。应用了四种回归模型(幂律、线性、指数、对数)来表征它们在0.5至5兆赫之间的频率依赖性。结果表明,体积粘度比动态粘度对衰减的驱动作用更强,特别是在富含液体的组织如肝脏和心肌中,其中压缩阻尼占主导。幂律模型始终能为所有衰减指标提供最佳拟合,揭示了一种尺度不变的频率关系。软骨和大脑等组织表现出较弱的粘性响应,这表明需要采用其他建模方法。这些发现不仅推进了对衰减机制的基本理解,还提供了经过验证的参数和建模策略,以提高治疗性超声规划和非侵入性、组织特异性声学设备设计中的预测准确性。