Ale Analía, Andrade Victoria S, Rojas Molina Florencia M, Montalto Luciana, Odetti Lucía M, Antezana Pablo E, Desimone Martín F, Simoniello María Fernanda
Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe S3000, Argentina.
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C142F, Argentina.
Animals (Basel). 2025 Sep 19;15(18):2734. doi: 10.3390/ani15182734.
In a changing world where temperature is expected to increase, emerging nanopollutants could affect the biota in complex ways. With zinc oxide nanoparticles (ZnONP) being one of the most applied nanomaterials, we exposed the freshwater invasive bivalve to 0 (control), 25, and 250 µg/L of ZnONP at 27 or 31 °C for 96 h. In parallel, a 24 h bioassay was performed to calculate filtration rate. After 96 h, in soft tissue of the bivalves, tissue-damage-related enzyme activities (aspartate aminotransferase and alkaline phosphatase) were inhibited at both concentrations and temperatures. Oxidative stress was observed through increased superoxide dismutase activity after both ZnONP concentrations at 27 °C and decreased catalase activity after 250 µg/L at 31 °C, while glutathione-S-transferase activity showed opposing significant tendencies depending on temperature. After 6 h, the filtration rate differed significantly between control groups, as it was higher at 31 °C. However, in case of 31 °C, bivalves exposed to ZnONP drastically decreased their filtration rate compared to control. Our study highlights nanotoxicological implications of ZnONP; as even at environmentally relevant concentrations (such as the lowest applied in this study), they exert deleterious effects on freshwater organisms, which could be worsened in a climate-change scenario.
在一个预计温度会升高的变化世界中,新出现的纳米污染物可能会以复杂的方式影响生物群。氧化锌纳米颗粒(ZnONP)是应用最广泛的纳米材料之一,我们在27或31°C下,将淡水入侵双壳贝类暴露于0(对照)、25和250μg/L的ZnONP中96小时。同时,进行了一项24小时生物测定以计算过滤率。96小时后,在双壳贝类的软组织中,两种浓度和温度下与组织损伤相关的酶活性(天冬氨酸转氨酶和碱性磷酸酶)均受到抑制。在27°C下两种ZnONP浓度处理后,超氧化物歧化酶活性增加,在31°C下250μg/L处理后过氧化氢酶活性降低,从而观察到氧化应激,而谷胱甘肽-S-转移酶活性根据温度呈现相反的显著趋势。6小时后,对照组之间的过滤率差异显著,因为在31°C时过滤率更高。然而,在31°C的情况下,与对照相比,暴露于ZnONP的双壳贝类的过滤率急剧下降。我们的研究强调了ZnONP的纳米毒理学影响;即使在与环境相关的浓度下(如本研究中应用的最低浓度),它们也会对淡水生物产生有害影响,在气候变化的情况下这种影响可能会加剧。