Itoh Kazuyoshi, Kurogochi Masaki, Kaname Tadashi, Furukawa Jun-Ichi, Nishihara Shoko
Glycan and Life Systems Integration Center (GaLSIC), Soka University, Tokyo 192-8577, Japan.
Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.
Biomolecules. 2025 Aug 29;15(9):1256. doi: 10.3390/biom15091256.
SLC35A2-CDG is a congenital disorder of glycosylation caused by mutations in the gene encoding a Golgi-localized UDP-galactose transporter. This transporter plays an essential role in glycan synthesis by transporting UDP-galactose from the cytoplasm into the Golgi lumen. Its dysfunction leads to impaired galactose-containing glycans and various neurological symptoms, although the underlying mechanisms remain largely unknown. We identified a novel SLC35A2-CDG patient carrying a pathogenic variant (c.617_620del, p.(Gln206ArgfsTer45)) who exhibited neurological abnormalities including bilateral ventriculomegaly. To investigate the disease mechanism, we established the first model of SLC35A2-CDG. Knockout of , the fly ortholog of , resulted in embryonic lethality, indicating its essential role. Knockdown of reduced mucin-type -glycans on muscles and neuromuscular junctions (NMJs), without affecting -glycans. knockdown larvae exhibited mislocalized NMJ boutons accompanied by a deficiency in basement membrane components on muscles. This phenotype resembles that of mutants of and , both involved in mucin-type -glycosylation. Genetic interaction between and was confirmed through double knockdown and double heterozygous analyses. Given that NMJs are widely used as a model for mammalian central synapses, our findings suggest that Ugalt regulates NMJ architecture via mucin-type -glycosylation and provide insights into the molecular basis of neurological abnormalities in SLC35A2-CDG.
SLC35A2 - CDG是一种糖基化先天性疾病,由编码高尔基体定位的UDP - 半乳糖转运蛋白的基因突变引起。该转运蛋白通过将UDP - 半乳糖从细胞质转运到高尔基体腔中,在聚糖合成中发挥重要作用。尽管其潜在机制在很大程度上仍不清楚,但其功能障碍会导致含半乳糖聚糖受损和各种神经症状。我们鉴定出一名携带致病变体(c.617_620del,p.(Gln206ArgfsTer45))的新型SLC35A2 - CDG患者,该患者表现出包括双侧脑室扩大在内的神经异常。为了研究疾病机制,我们建立了首个SLC35A2 - CDG模型。敲除其果蝇直系同源基因导致胚胎致死,表明其重要作用。敲低该基因会减少肌肉和神经肌肉接头(NMJ)上的粘蛋白型O - 聚糖,而不影响N - 聚糖。敲低该基因的幼虫表现出NMJ轴突终扣定位错误,同时肌肉上基底膜成分缺乏。这种表型类似于参与粘蛋白型O - 糖基化的和的突变体。通过双敲低和双杂合分析证实了与之间的遗传相互作用。鉴于果蝇NMJ被广泛用作哺乳动物中枢突触的模型,我们的研究结果表明Ugalt通过粘蛋白型O - 糖基化调节NMJ结构,并为SLC35A2 - CDG神经异常的分子基础提供了见解。