Suppr超能文献

VarMeter2:一种基于结构的增强型方法,通过马氏距离预测致病性错义变异。

VarMeter2: An enhanced structure-based method for predicting pathogenic missense variants through Mahalanobis distance.

作者信息

Ohno Shiho, Ogura Chika, Yabuki Akane, Itoh Kazuyoshi, Manabe Noriyoshi, Angata Kiyohiko, Togayachi Akira, Aoki-Kinoshita Kiyoko, Furukawa Jun-Ichi, Inamori Kei-Ichiro, Inokuchi Jin-Ichi, Kaname Tadashi, Nishihara Shoko, Yamaguchi Yoshiki

机构信息

Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan.

Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Japan.

出版信息

Comput Struct Biotechnol J. 2025 Mar 1;27:1034-1047. doi: 10.1016/j.csbj.2025.02.008. eCollection 2025.

Abstract

Various computational methods have been developed to predict the pathogenicity of missense variants, which is crucial for diagnosing rare diseases. Recently, we introduced VarMeter, a diagnostic tool for predicting variant pathogenicity based on normalized solvent-accessible surface area (nSASA) and mutation energy calculated from AlphaFold 3D models, and validated it on arylsulfatase L. To evaluate the broader applicability of VarMeter and enhance its predictive accuracy, here we analyzed 296 pathogenic and 240 benign variants extracted from the ClinVar database. By comparing structural features including nSASA, mutation energy, and predicted local distance difference test (pLDDT) score, we identified distinct characteristics between pathogenic and benign variants. These features were used to develop VarMeter2, which classifies variants based on Mahalanobis distance. VarMeter2 achieved a prediction accuracy of 82 % for the ClinVar dataset, a marked improvement over the original VarMeter (74 %), and 84 % for published missense variants of -sulphoglucosamine sulphohydrolase (SGSH), an enzyme associated with Sanfillippo syndrome A. Application of VarMeter 2 to SGSH variants in our clinical database identified a novel SGSH variant, Q365P, as pathogenic. The recombinant Q365P protein lacked enzymatic activity as compared with wild-type SGSH. Furthermore, it was largely retained in the endoplasmic reticulum and failed to reach the Golgi, probably due to misfolding. Protein stability assays confirmed reduced stability of the variant, further explaining its loss of function. Consistently, the patient homozygous for this variant was diagnosed with Sanfilippo syndrome A. These results underscore the predictive power and versatility of VarMeter2 in assessing the pathogenicity of missense variants.

摘要

已经开发了各种计算方法来预测错义变体的致病性,这对于罕见病的诊断至关重要。最近,我们推出了VarMeter,这是一种基于归一化溶剂可及表面积(nSASA)和从AlphaFold 3D模型计算出的突变能量来预测变体致病性的诊断工具,并在芳基硫酸酯酶L上进行了验证。为了评估VarMeter的更广泛适用性并提高其预测准确性,我们在此分析了从ClinVar数据库中提取的296个致病性变体和240个良性变体。通过比较包括nSASA、突变能量和预测局部距离差异测试(pLDDT)分数在内的结构特征,我们确定了致病性变体和良性变体之间的明显特征。这些特征被用于开发VarMeter2,它基于马氏距离对变体进行分类。VarMeter2在ClinVar数据集上的预测准确率达到了82%,比原始的VarMeter(74%)有显著提高,对于与A 型Sanfillippo综合征相关的酶——硫酸葡萄糖胺硫酸酯酶(SGSH)的已发表错义变体,其预测准确率为84%。将VarMeter 2应用于我们临床数据库中的SGSH变体,鉴定出一种新的SGSH变体Q365P具有致病性。与野生型SGSH相比,重组Q365P蛋白缺乏酶活性。此外,它大部分保留在内质网中,未能到达高尔基体,可能是由于错误折叠。蛋白质稳定性测定证实了该变体稳定性降低,进一步解释了其功能丧失。一致地,该变体的纯合子患者被诊断为A 型Sanfillippo综合征。这些结果强调了VarMeter2在评估错义变体致病性方面的预测能力和通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验