Zeng Zhuoyan, Wei Mingsi, Zhang Shuhao, Cui Hanchen, Dagda Ruben K, Gasanoff Edward S
Advanced STEM Research Center, Beijing Chaoyang Kaiwen Academy, Beijing 100018, China.
Department of Pharmacology, University of Nevada Medical School, Reno, NV 89557, USA.
Pharmaceuticals (Basel). 2025 Sep 5;18(9):1334. doi: 10.3390/ph18091334.
: Recent evidence challenges the classical chemiosmotic theory, suggesting that proton movement along membrane surfaces-not bulk-phase gradients-drives bioenergetic processes. Proton accumulation on membranes like the myelin sheath and endoplasmic reticulum (ER) may represent a universal mechanism for cellular energy storage. This study investigates whether phospholipids from these membranes, combined with anionic bee venom proteins, enhance proton absorption, potentially elucidating a novel bioenergetic pathway. : Five phospholipids (phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, phosphatidylcholine) from rat liver were isolated to model myelin/ER membranes. Anionic proteins (p 5.65-5.80) were purified from bee venom via cation exchange chromatography. Liposomes (with/without proteins) were prepared, and proton absorption was quantified by pH changes in suspensions versus pure water. Statistical significance was assessed via ANOVA and -tests. : All phospholipid liposomes examined in this study absorbed protons under the tested conditions, with phosphatidylethanolamine showing the highest capacity (pH increase: 7.00 → 7.18). Liposomes enriched with anionic proteins exhibited significantly greater proton absorption (e.g., phosphatidylserine + proteins: pH 8.15 vs. 7.15 alone; < 2.43 × 10). Sphingomyelin-protein liposomes absorbed the most protons, suggesting that protein-phospholipid interactions modulate surface proton affinity. : Anionic bee venom proteins amplify proton absorption by phospholipid membranes, supporting the hypothesis that lipid-protein complexes act as "proton capacitors". This mechanism may underpin extramitochondrial energy storage in myelin and ER. Pharmacologically, targeting these interactions could mitigate bioenergetic deficits in aging or disease. Further research should define the structural basis of proton capture by membrane-anchored proteins.
近期证据对经典的化学渗透理论提出了挑战,表明质子沿膜表面移动而非通过体相梯度驱动生物能量学过程。质子在髓鞘和内质网(ER)等膜上的积累可能代表了细胞能量储存的一种普遍机制。本研究调查了来自这些膜的磷脂与阴离子型蜂毒蛋白结合后是否会增强质子吸收,这可能会阐明一种新的生物能量学途径。
从大鼠肝脏中分离出五种磷脂(磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、鞘磷脂、磷脂酰胆碱)以模拟髓鞘/内质网膜。通过阳离子交换色谱法从蜂毒中纯化出阴离子蛋白(p 5.65 - 5.80)。制备了脂质体(含/不含蛋白质),并通过悬浮液相对于纯水的pH变化对质子吸收进行定量。通过方差分析和t检验评估统计学显著性。
在本研究中检测的所有磷脂脂质体在测试条件下均吸收质子,其中磷脂酰乙醇胺显示出最高的吸收能力(pH升高:7.00 → 7.18)。富含阴离子蛋白的脂质体表现出显著更高的质子吸收(例如,磷脂酰丝氨酸 + 蛋白质:pH 8.15,而单独的磷脂酰丝氨酸为pH 7.15;P < 2.43 × 10)。鞘磷脂 - 蛋白质脂质体吸收的质子最多,表明蛋白质 - 磷脂相互作用调节表面质子亲和力。
阴离子型蜂毒蛋白增强了磷脂膜的质子吸收,支持了脂质 - 蛋白质复合物充当“质子电容器”的假说。这一机制可能是髓鞘和内质网中线粒体外能量储存的基础。从药理学角度来看,针对这些相互作用可能会减轻衰老或疾病中的生物能量学缺陷。进一步的研究应确定膜锚定蛋白捕获质子的结构基础。