Teng Yan, Yang Haodong, Cui Xinhong, Li Xiaoze, Shi Yanchao
Key Laboratory of Advanced Science and Technology on High Power Microwave, Northwest Institute of Nuclear Technology, Xi'an 710024, China.
Sensors (Basel). 2025 Sep 11;25(18):5667. doi: 10.3390/s25185667.
This paper reveals a counterintuitive, non-monotonic dependence of terahertz coded-aperture imaging (TCAI) performance on the imaging range. This phenomenon stems from phase-induced spatiotemporal correlations in the reference-signal matrix (RSM), governed by the wavefront phase interactions between the coded-aperture elements and scatterers on the imaging plane. Image quality deteriorates noticeably when a specific dimensionless criterion, which is defined mathematically and physically in this work, precisely reaches integer values. Under such conditions, the relative phase difference concentrates or clusters into discrete values determined by the imaging range, leading to strong column and row correlations in RSM that compromise the spatiotemporal independence essential for high-quality reconstruction. For imaging ranges exceeding the critical threshold determined by the number of grid points along one dimension of the imaging plane, two degradation mechanisms emerge: increased correlation between RSM columns mapping to directly adjacent scatterers and phase coverage reduction in wavefront encoding. Both effects intensify as the imaging range increases, resulting in a monotonic deterioration of imaging performance. Crucially, reconstruction fails primarily when strong correlations involve dominant scatterers, whereas correlations among non-dominant (dummy) scatterers have a negligible impact. The Two-step Iterative Shrinkage/Thresholding (TwIST) algorithm demonstrates superior robustness under these challenging conditions compared to some other conventional methods. These insights provide practical guidance for optimizing TCAI system design and operational range selection to avoid performance degradation zones.
本文揭示了太赫兹编码孔径成像(TCAI)性能对成像范围存在违反直觉的非单调依赖性。这种现象源于参考信号矩阵(RSM)中的相位诱导时空相关性,它由编码孔径元件与成像平面上散射体之间的波前相位相互作用所支配。当一个在本文中从数学和物理角度定义的特定无量纲准则精确达到整数值时,图像质量会显著下降。在这种情况下,相对相位差会集中或聚集成由成像范围决定的离散值,导致RSM中出现强烈的列和行相关性,从而损害了高质量重建所必需的时空独立性。对于超过由成像平面一维上的网格点数确定的临界阈值的成像范围,会出现两种退化机制:映射到直接相邻散射体的RSM列之间的相关性增加,以及波前编码中的相位覆盖减少。随着成像范围的增加,这两种效应都会加剧,导致成像性能单调下降。至关重要的是,当强相关性涉及主要散射体时,重建主要会失败,而非主要(虚拟)散射体之间的相关性影响可忽略不计。与其他一些传统方法相比,两步迭代收缩/阈值化(TwIST)算法在这些具有挑战性的条件下表现出卓越的鲁棒性。这些见解为优化TCAI系统设计和操作范围选择以避免性能下降区域提供了实际指导。