Zhang Daoguangyao, Lv Xuefei, Jiang Hao, Fan Yunlong, Liu Kexin, Wang Hao, Deng Yulin
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Sensors (Basel). 2025 Sep 17;25(18):5791. doi: 10.3390/s25185791.
Respiratory infectious diseases, such as COVID-19, influenza, and tuberculosis, continue to impose a significant global health burden, underscoring the urgent demand for rapid, sensitive, and cost-effective diagnostic technologies. Integrated microfluidic platforms offer compelling advantages through miniaturization, automation, and high-throughput processing, enabling "sample-in, answer-out" workflows suitable for point-of-care applications. However, their clinical deployment faces challenges, including the complexity of sample matrices, low-abundance target detection, and the need for reliable multiplexing. The convergence of artificial intelligence (AI) with microfluidic systems has emerged as a transformative paradigm, addressing these limitations by optimizing chip design, automating sample pre-processing, enhancing signal interpretation, and enabling real-time feedback control. This critical review surveys AI-enabled strategies across each functional layer of respiratory pathogen diagnostics: from chip architecture and fluidic control to amplification analysis, signal prediction, and smartphone/IoT-linked decision support. We highlight key areas where AI offers measurable benefits over conventional methods. To transition from research prototypes to clinical tools, future systems must become more adaptive, data-efficient, and clinically insightful. Advances such as sensor-integrated chips, privacy-preserving machine learning, and multimodal data fusion will be essential to ensure robust performance and meaningful outputs across diverse scenarios. This review outlines recent progress, current limitations, and future directions. The rapid development of AI and microfluidics presents exciting opportunities for next-generation pathogen diagnostics, and we hope this work contributes to the advancement of intelligent, point-of-care testing (POCT) solutions.
呼吸道传染病,如新型冠状病毒肺炎、流感和结核病,继续给全球健康带来重大负担,这凸显了对快速、灵敏且经济高效的诊断技术的迫切需求。集成微流控平台通过小型化、自动化和高通量处理提供了引人注目的优势,实现了适用于即时检测应用的“进样即出结果”工作流程。然而,它们的临床应用面临挑战,包括样本基质的复杂性、低丰度目标检测以及可靠多重检测的需求。人工智能(AI)与微流控系统的融合已成为一种变革性范式,通过优化芯片设计、自动化样本预处理、增强信号解读以及实现实时反馈控制来解决这些限制。这篇综述文章调查了呼吸道病原体诊断各个功能层的人工智能策略:从芯片架构和流体控制到扩增分析、信号预测以及与智能手机/物联网相连的决策支持。我们强调了人工智能相对于传统方法具有显著优势的关键领域。为了从研究原型转变为临床工具,未来的系统必须变得更具适应性、数据效率更高且临床洞察力更强。诸如集成传感器芯片、隐私保护机器学习和多模态数据融合等进展对于确保在各种场景下的稳健性能和有意义的输出至关重要。本综述概述了近期进展、当前局限性和未来方向。人工智能和微流控技术的快速发展为下一代病原体诊断带来了令人兴奋的机遇,我们希望这项工作有助于推动智能即时检测(POCT)解决方案的发展。