Suppr超能文献

通过激光诱导击穿光谱法对钙基尿路结石进行元素组成分析以增强临床见解。

Elemental composition analysis of calcium-based urinary stones via laser-induced breakdown spectroscopy for enhanced clinical insights.

作者信息

Xie Haijie, Huang Junkai, Wang Rui, Ma Xiaohong, Xie Linguo, Zhang Hongjie, Li Jie, Liu Chunyu

机构信息

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.

Department of Electronic Engineering, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China.

出版信息

Sci Rep. 2025 Sep 29;15(1):33587. doi: 10.1038/s41598-025-18749-6.

Abstract

The purpose of this study was to profile elemental composition of calcium-based urinary stones using laser-induced breakdown spectroscopy (LIBS) and develop a machine learning model to distinguish recurrence-associated profiles by integrating elemental and clinical data. A total of 122 calcium-based stones (41 calcium oxalate, 11 calcium phosphate, 49 calcium oxalate/calcium phosphate, 8 calcium oxalate/uric acid, 13 calcium phosphate/struvite) were analyzed via LIBS. Elemental intensity ratios (H/Ca, P/Ca, Mg/Ca, Sr/Ca, Na/Ca, K/Ca) were calculated using Ca (396.847 nm) as reference. Clinical variables (demographics, laboratory and imaging results, recurrence status) were retrospectively collected. A back propagation neural network (BPNN) model was trained using four data strategies: clinical-only, spectral principal components (PCs), combined PCs plus clinical, and merged raw spectral plus clinical data. The performance of these four models was evaluated. Sixteen stone samples from other medical centers were used as external validation sets. Mg and Sr were detected in most of stones. Significant correlations existed among P, Mg, Sr, and K ratios. Recurrent patients showed elevated elemental ratios (p < 0.01), higher urine pH (p < 0.01), and lower stone CT density (p = 0.044). The BPNN model with merged spectral plus clinical data achieved optimal performance in classification (test set accuracy: 94.37%), significantly outperforming clinical-only models (test set accuracy: 73.37%). The results of external validation indicate that the model has good generalization ability. LIBS reveals ubiquitous Mg and Sr in calcium-based stones and elevated elemental ratios in recurrent cases. Integration of elemental profiles with clinical data enables high-accuracy classification of recurrence-associated profiles, providing insights for potential risk stratification in urolithiasis management.

摘要

本研究的目的是利用激光诱导击穿光谱法(LIBS)分析钙基尿路结石的元素组成,并通过整合元素和临床数据建立一个机器学习模型来区分与复发相关的特征。通过LIBS对总共122颗钙基结石(41颗草酸钙结石、11颗磷酸钙结石、49颗草酸钙/磷酸钙结石、8颗草酸钙/尿酸结石、13颗磷酸钙/鸟粪石结石)进行了分析。以钙(396.847 nm)为参考计算元素强度比(H/Ca、P/Ca、Mg/Ca、Sr/Ca、Na/Ca、K/Ca)。回顾性收集临床变量(人口统计学、实验室和影像学检查结果、复发状态)。使用四种数据策略训练反向传播神经网络(BPNN)模型:仅临床数据、光谱主成分(PCs)、组合PCs加临床数据以及合并原始光谱加临床数据。评估了这四种模型的性能。将来自其他医疗中心的16个结石样本用作外部验证集。在大多数结石中检测到了镁和锶。磷、镁、锶和钾的比例之间存在显著相关性。复发患者的元素比例升高(p < 0.01)、尿液pH值较高(p < 0.01)且结石CT密度较低(p = 0.044)。合并光谱加临床数据的BPNN模型在分类方面表现最佳(测试集准确率:94.37%),显著优于仅临床数据模型(测试集准确率:73.37%)。外部验证结果表明该模型具有良好的泛化能力。LIBS揭示了钙基结石中普遍存在的镁和锶以及复发病例中升高的元素比例。将元素特征与临床数据相结合能够对与复发相关的特征进行高精度分类,为尿路结石管理中的潜在风险分层提供见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验