Suppr超能文献

富勒烯包覆纳米颗粒在粗糙表面的润滑行为。

Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces.

作者信息

Han Guangchao, Shen Zifu, Jia Zhezhe, Yan Ruilin, Wang Hailong

机构信息

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China.

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing 100190, China.

出版信息

Langmuir. 2025 Oct 14;41(40):27248-27262. doi: 10.1021/acs.langmuir.5c03191. Epub 2025 Oct 1.

Abstract

Nanoparticles exhibit excellent lubrication properties and are utilized on rough interfaces to mitigate friction. This study investigates the lubrication behavior of composite C fullerene-coated silicon nanoparticles on rough silicon surfaces through all-atom molecular dynamics simulations (LAMMPS). The effects of key factors, including applied load, nanoparticle quantity, sliding velocity, and surface roughness, are systematically analyzed. Our results show that under high applied loads, increasing nanoparticle quantity effectively alleviates stress concentration, reducing both structural deformation and friction. However, excessive quantities cause pronounced protrusions that increase structural deformation. Velocity changes do not significantly impact friction or structural deformation, as the motion patterns of the probe and nanoparticles remain consistent. However, under low applied loads, probe-driven nanoparticle motion becomes the dominant factor in frictional energy dissipation. A positive correlation between the total kinetic energy of nanoparticles and friction force is observed across different roughness surfaces. The negative effects of excessive nanoparticles become more pronounced with increasing surface roughness. The optimal nanoparticle quantity is determined to be the minimum required to prevent stress-concentration-induced structural deformation. The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%-55% compared to the peak kinetic energy conditions. At low sliding velocities, nanoparticles fully adapt to substrate grooves, ensuring the probe and nanoparticles follow nearly identical interaction patterns at different velocities, making friction independent of sliding velocity. However, at high velocities, the nanoparticles act as abrasive particles, causing significant increases in both structural deformation and friction. On flat surfaces, friction is proportional to the applied load and remains independent of nanoparticle quantity. This study provides atomic-level insights into nanoparticle lubrication on rough surfaces, elucidating how nanoparticle concentration governs lubrication performance under varying conditions.

摘要

纳米颗粒具有优异的润滑性能,被用于粗糙界面以减轻摩擦。本研究通过全原子分子动力学模拟(LAMMPS)研究了复合C富勒烯包覆硅纳米颗粒在粗糙硅表面的润滑行为。系统分析了包括外加负载、纳米颗粒数量、滑动速度和表面粗糙度等关键因素的影响。我们的结果表明,在高外加负载下,增加纳米颗粒数量可有效缓解应力集中,减少结构变形和摩擦。然而,过量的纳米颗粒会导致明显的凸起,增加结构变形。速度变化对摩擦或结构变形没有显著影响,因为探针和纳米颗粒的运动模式保持一致。然而,在低外加负载下,探针驱动的纳米颗粒运动成为摩擦能量耗散的主导因素。在不同粗糙度表面上,观察到纳米颗粒的总动能与摩擦力之间存在正相关。随着表面粗糙度的增加,过量纳米颗粒的负面影响变得更加明显。确定最佳纳米颗粒数量为防止应力集中引起结构变形所需的最小值。在高负载条件下,最佳纳米颗粒浓度约为88.8%,浓度每增加3.55%,结构变形减少0.45%,摩擦减少0.59 nN。在低负载条件下,最佳浓度在不同表面粗糙度水平下为15%至30%,与峰值动能条件相比,摩擦减少30%-55%。在低滑动速度下,纳米颗粒完全适应基底凹槽,确保探针和纳米颗粒在不同速度下遵循几乎相同的相互作用模式,使摩擦与滑动速度无关。然而,在高速度下,纳米颗粒起到磨粒的作用,导致结构变形和摩擦显著增加。在平坦表面上,摩擦与外加负载成正比,且与纳米颗粒数量无关。本研究提供了关于粗糙表面上纳米颗粒润滑的原子级见解,阐明了纳米颗粒浓度如何在不同条件下控制润滑性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验