Suppr超能文献

使用UNet和迁移学习模型自动评估和检测第三磨牙与下牙槽神经的关系。

Automated assessment and detection of third molar and inferior alveolar nerve relations using UNet and transfer learning models.

作者信息

Klaib Ahmad F, Saif Amal, Alhosanie Tasneem N, Barakat Motaz, AbuHijleh Iyas, Khasawneh Rama, AlMadani Wa'ed, Alomari Saja, Alghanim Danah, Dabobash Bayan, Hussien Taimaa, Shalbak Jude, Darweesh Majd, AlHadidi Abeer, Abu Karaky Ashraf

机构信息

Information Systems Department, Yarmouk University, Irbid, 21163, Jordan.

Software Engineering Department, Princess Sumaya University for Technology, Amman, 11941, Jordan.

出版信息

Sci Rep. 2025 Oct 3;15(1):34529. doi: 10.1038/s41598-025-17753-0.

Abstract

Panoramic radiographs (PRs) are widely used in assessing the relationship between the mandibular third molar (MM3) and the inferior alveolar nerve (IAN). The relationship of MM3 and IAN is a critical consideration in oral and maxillofacial surgery due to the risk of nerve injury that can lead to anesthesia in the lower lip or chin. This study aimed to evaluate the performance of different transfer learning models in classifying these relations into four classes after detecting and segmenting the MM3 and the IAN using a new method with the UNet model. 714 PRs from more than 500 patients, representing four classes, were utilized in a UNet model to annotate the MM3 and IAN. Then, the annotations were extracted and augmented to yield 1021 images, thereby achieving a more balanced distribution of samples in each class. Different transfer learning models were evaluated in classifying the images using 10-fold cross-validation. The UNet model achieves an accuracy of 0.97 in annotating the images. The transfer learning models performed well. The best model, DenseNet121, achieved an average accuracy of 0.84, precision of 0.86, recall of 0.84, and F1-score of 0.85 across all folds and classes. The proposed approach demonstrates high performance compared to other works, classifying four classes and achieving similar or better performance than other techniques. It can also benefit dentists at the annotation and classification stages. Based on our results, this approach holds promise for opening several research directions in the future.Trial registration: This study was approved by the internal review boards (IRB) of the Jordan University Hospital (JUH) (Ref. No. 10/2025/3202).

摘要

全景X线片(PRs)广泛应用于评估下颌第三磨牙(MM3)与下牙槽神经(IAN)之间的关系。由于存在神经损伤风险,可能导致下唇或下巴麻木,MM3与IAN的关系是口腔颌面外科的一个关键考量因素。本研究旨在评估不同迁移学习模型在使用一种结合U-Net模型的新方法检测和分割MM3与IAN后,将这些关系分为四类的性能。来自500多名患者的714张PRs,代表四类情况,被用于U-Net模型中对MM3和IAN进行标注。然后,提取并增强标注信息以生成1021张图像,从而在每个类别中实现样本更均衡的分布。使用10折交叉验证对不同的迁移学习模型在图像分类方面进行评估。U-Net模型在图像标注方面的准确率达到0.97。迁移学习模型表现良好。最佳模型DenseNet121在所有折次和类别上的平均准确率为0.84,精确率为0.86,召回率为0.84,F1分数为0.85。与其他研究相比,所提出的方法表现出高性能,能够对四类情况进行分类,并且性能与其他技术相似或更优。它还可以在标注和分类阶段为牙医提供帮助。基于我们的结果,这种方法有望在未来开启多个研究方向。试验注册:本研究已获得约旦大学医院(JUH)内部审查委员会(IRB)的批准(参考编号:10/2025/3202)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934f/12494869/48341b6a5fec/41598_2025_17753_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验