Suppr超能文献

人工智能模型辅助下的监督学习和半监督学习在全景片诊断下颌阻生第三磨牙中的效能。

The efficacy of supervised learning and semi-supervised learning in diagnosis of impacted third molar on panoramic radiographs through artificial intelligence model.

机构信息

Division of Oral & Maxillofacial Surgery, Department of Dentistry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Department of Dentistry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

出版信息

Dentomaxillofac Radiol. 2023 Sep;52(6):20230030. doi: 10.1259/dmfr.20230030. Epub 2023 May 16.

Abstract

OBJECTIVES

The aim of the study was to evaluate the efficacy of traditional supervised learning (SL) and semi-supervised learning (SSL) in the classification of mandibular third molars (Mn3s) on panoramic images. The simplicity of preprocessing step and the outcome of the performance of SL and SSL were analyzed.

METHODS

Total 1625 Mn3s cropped images from 1000 panoramic images were labeled for classifications of the depth of impaction (D class), spatial relation with adjacent second molar (S class), and relationship with inferior alveolar nerve canal (N class). For the SL model, WideResNet (WRN) was applicated and for the SSL model, LaplaceNet (LN) was utilized.

RESULTS

In the WRN model, 300 labeled images for D and S classes, and 360 labeled images for N class were used for training and validation. In the LN model, only 40 labeled images for D, S, and N classes were used for learning. The F1 score were 0.87, 0.87, and 0.83 in WRN model, 0.84, 0.94, and 0.80 for D class, S class, and N class in the LN model, respectively.

CONCLUSIONS

These results confirmed that the LN model applied as SSL, even utilizing a small number of labeled images, demonstrated the satisfactory of the prediction accuracy similar to that of the WRN model as SL.

摘要

目的

本研究旨在评估传统监督学习(SL)和半监督学习(SSL)在全景图像中下颌第三磨牙(Mn3s)分类中的效果。分析了 SL 和 SSL 的预处理步骤的简单性和性能结果。

方法

从 1000 张全景图像中裁剪出 1625 个 Mn3s 图像,对其进行分类,包括深度(D 类)、与相邻第二磨牙的空间关系(S 类)和与下牙槽神经管的关系(N 类)。对于 SL 模型,应用了 WideResNet(WRN),对于 SSL 模型,应用了 LaplaceNet(LN)。

结果

在 WRN 模型中,使用了 300 个 D 类和 S 类的标记图像和 360 个 N 类的标记图像进行训练和验证。在 LN 模型中,仅使用 40 个 D、S 和 N 类的标记图像进行学习。WRN 模型的 F1 分数分别为 0.87、0.87 和 0.83,LN 模型的 D 类、S 类和 N 类的 F1 分数分别为 0.84、0.94 和 0.80。

结论

这些结果证实,即使使用少量标记图像,作为 SSL 应用的 LN 模型也表现出与作为 SL 的 WRN 模型相似的令人满意的预测准确性。

相似文献

3
Preinterventional Third-Molar Assessment Using Robust Machine Learning.使用稳健机器学习进行术前第三磨牙评估。
J Dent Res. 2023 Dec;102(13):1452-1459. doi: 10.1177/00220345231200786. Epub 2023 Nov 9.

本文引用的文献

2
[Development of an Optimized Deep Learning Model for Medical Imaging].[用于医学成像的优化深度学习模型的开发]
Taehan Yongsang Uihakhoe Chi. 2020 Nov;81(6):1274-1289. doi: 10.3348/jksr.2020.0171. Epub 2020 Nov 30.
5
Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction.深度学习与医学图像分析在 COVID-19 诊断与预测中的应用。
Annu Rev Biomed Eng. 2022 Jun 6;24:179-201. doi: 10.1146/annurev-bioeng-110220-012203. Epub 2022 Mar 22.
7
Deep Neural Networks for Medical Image Segmentation.深度学习在医学图像分割中的应用。
J Healthc Eng. 2022 Mar 10;2022:9580991. doi: 10.1155/2022/9580991. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验