Division of Oral & Maxillofacial Surgery, Department of Dentistry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Department of Dentistry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Dentomaxillofac Radiol. 2023 Sep;52(6):20230030. doi: 10.1259/dmfr.20230030. Epub 2023 May 16.
The aim of the study was to evaluate the efficacy of traditional supervised learning (SL) and semi-supervised learning (SSL) in the classification of mandibular third molars (Mn3s) on panoramic images. The simplicity of preprocessing step and the outcome of the performance of SL and SSL were analyzed.
Total 1625 Mn3s cropped images from 1000 panoramic images were labeled for classifications of the depth of impaction (D class), spatial relation with adjacent second molar (S class), and relationship with inferior alveolar nerve canal (N class). For the SL model, WideResNet (WRN) was applicated and for the SSL model, LaplaceNet (LN) was utilized.
In the WRN model, 300 labeled images for D and S classes, and 360 labeled images for N class were used for training and validation. In the LN model, only 40 labeled images for D, S, and N classes were used for learning. The F1 score were 0.87, 0.87, and 0.83 in WRN model, 0.84, 0.94, and 0.80 for D class, S class, and N class in the LN model, respectively.
These results confirmed that the LN model applied as SSL, even utilizing a small number of labeled images, demonstrated the satisfactory of the prediction accuracy similar to that of the WRN model as SL.
本研究旨在评估传统监督学习(SL)和半监督学习(SSL)在全景图像中下颌第三磨牙(Mn3s)分类中的效果。分析了 SL 和 SSL 的预处理步骤的简单性和性能结果。
从 1000 张全景图像中裁剪出 1625 个 Mn3s 图像,对其进行分类,包括深度(D 类)、与相邻第二磨牙的空间关系(S 类)和与下牙槽神经管的关系(N 类)。对于 SL 模型,应用了 WideResNet(WRN),对于 SSL 模型,应用了 LaplaceNet(LN)。
在 WRN 模型中,使用了 300 个 D 类和 S 类的标记图像和 360 个 N 类的标记图像进行训练和验证。在 LN 模型中,仅使用 40 个 D、S 和 N 类的标记图像进行学习。WRN 模型的 F1 分数分别为 0.87、0.87 和 0.83,LN 模型的 D 类、S 类和 N 类的 F1 分数分别为 0.84、0.94 和 0.80。
这些结果证实,即使使用少量标记图像,作为 SSL 应用的 LN 模型也表现出与作为 SL 的 WRN 模型相似的令人满意的预测准确性。