Suppr超能文献

基于心电图和加速度信号的可解释深度学习在增量运动中进行个性化能量消耗预测

Interpretable deep learning for personalized energy expenditure prediction using ECG and acceleration signals in incremental exercise.

作者信息

Song Yingzhe, Wang Zhen, Wang Hongxing, Sun Gang, Gong Bingnan, Zhang Fangfang

机构信息

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, 100191, China.

Department of Rehabilitation, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 404100, China.

出版信息

Sci Rep. 2025 Oct 16;15(1):36277. doi: 10.1038/s41598-025-20195-3.

Abstract

Energy expenditure (EE) assessment is crucial in both sports science and health management. However, current EE prediction models often overlook individual differences and lack dynamic correlation analysis between multi-modal data and EE. Building upon previous research, this study proposes a personalized dynamic-static feature fusion framework, which integrates two types of information to improve energy expenditure (EE) prediction during incremental load exercise: dynamic signals (physiological signals recorded continuously during exercise, such as tri-axial acceleration and electrocardiography [ECG]) and static physiological metrics (stable individual traits measured at rest, such as BMI, body-fat percentage, resting heart rate, and resting oxygen uptake [VO]). These two feature sets were combined through a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) neural network architecture. CNN layers extract local temporal patterns from dynamic signals, and LSTM layers model temporal dependencies over longer intervals. The model prediction performance was evaluated using root mean square error (RMSE), coefficient of determination (R²), mean absolute error (MAE) and Bland-Altman plots, and the results show that the CNN + LSTM model significantly outperforms both the traditional autoregressive (AR) linear model and the LSTM model that uses only a single modality (acceleration or ECG). Analysis of feature values and SHAP values revealed that accelerometer features played a dominant role in EE prediction during moderate-to-high intensity exercise. As exercise intensity increased, the contribution of ECG features gradually increased, with ECG features dominating during high-intensity exercise, demonstrating the complementary effect and dual contribution of these two types of features in EE prediction at different exercise intensities. This study demonstrates that personalized dynamic-static feature fusion can effectively predict EE during incremental exercise tests and analyzes the dynamic changes in the contribution of different features across different intensity ranges, providing a theoretical basis and methodological reference for related research.

摘要

能量消耗(EE)评估在体育科学和健康管理中都至关重要。然而,当前的EE预测模型往往忽视个体差异,并且缺乏多模态数据与EE之间的动态相关性分析。基于先前的研究,本研究提出了一种个性化的动静特征融合框架,该框架整合了两种类型的信息,以改善递增负荷运动期间的能量消耗(EE)预测:动态信号(运动期间连续记录的生理信号,如三轴加速度和心电图[ECG])和静态生理指标(静息时测量的稳定个体特征,如BMI、体脂百分比、静息心率和静息摄氧量[VO])。这两个特征集通过混合卷积神经网络(CNN)和长短期记忆(LSTM)神经网络架构进行组合。CNN层从动态信号中提取局部时间模式,而LSTM层对较长时间间隔内的时间依赖性进行建模。使用均方根误差(RMSE)、决定系数(R²)、平均绝对误差(MAE)和布兰德-奥特曼图对模型预测性能进行评估,结果表明,CNN + LSTM模型明显优于传统的自回归(AR)线性模型和仅使用单一模态(加速度或ECG)的LSTM模型。对特征值和SHAP值的分析表明,加速度计特征在中高强度运动期间的EE预测中起主导作用。随着运动强度的增加,ECG特征的贡献逐渐增加,在高强度运动期间ECG特征占主导地位,这表明这两种类型的特征在不同运动强度下的EE预测中具有互补作用和双重贡献。本研究表明,个性化的动静特征融合可以有效地预测递增运动测试期间的EE,并分析不同特征在不同强度范围内贡献的动态变化,为相关研究提供了理论基础和方法学参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31b9/12533141/47c42d46094e/41598_2025_20195_Fig1_HTML.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验