Suppr超能文献

GTAT-GRN:一种用于基因调控网络推理的具有多源特征融合的图拓扑感知注意力方法。

GTAT-GRN: a graph topology-aware attention method with multi-source feature fusion for gene regulatory network inference.

作者信息

Wang Shuran, Zhang Lilian, Gao Lutao, Rao Yao, Cui Jie, Yang Linnan

机构信息

College of Big Data, Yunnan Agricultural University, Kunming, China.

Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China.

出版信息

Front Genet. 2025 Oct 8;16:1668773. doi: 10.3389/fgene.2025.1668773. eCollection 2025.

Abstract

Gene regulatory network (GRN) inference is a central task in systems biology. However, due to the noisy nature of gene expression data and the diversity of regulatory structures, accurate GRN inference remains challenging. We hypothesize that integrating multi-source features and leveraging an attention mechanism that explicitly captures graph structure can enhance GRN inference performance. Based on this, we propose GTAT-GRN, a deep graph neural network model with a graph topological attention mechanism that fuses multi-source features. GTAT-GRN includes a feature fusion module to jointly model temporal expression patterns, baseline expression levels, and structural topological attributes, improving node representation. In addition, we introduce the Graph Topology-Aware Attention Network (GTAT), which combines graph structure information with multi-head attention to capture potential gene regulatory dependencies. We conducted comprehensive evaluations of GTAT-GRN on multiple benchmark datasets and compared it with several state-of-the-art inference methods, including GENIE3 and GreyNet. The experimental results show that GTAT-GRN consistently achieves higher inference accuracy and improved robustness across datasets. These findings indicate that integrating graph topological attention with multi-source feature fusion can effectively enhance GRN reconstruction.

摘要

基因调控网络(GRN)推断是系统生物学中的核心任务。然而,由于基因表达数据的噪声特性和调控结构的多样性,准确的GRN推断仍然具有挑战性。我们假设整合多源特征并利用能够明确捕捉图结构的注意力机制可以提高GRN推断性能。基于此,我们提出了GTAT-GRN,这是一种具有图拓扑注意力机制的深度图神经网络模型,可融合多源特征。GTAT-GRN包括一个特征融合模块,用于联合建模时间表达模式、基线表达水平和结构拓扑属性,从而改善节点表示。此外,我们引入了图拓扑感知注意力网络(GTAT),它将图结构信息与多头注意力相结合,以捕捉潜在的基因调控依赖性。我们在多个基准数据集上对GTAT-GRN进行了全面评估,并将其与几种最新的推断方法进行了比较,包括GENIE3和GreyNet。实验结果表明,GTAT-GRN在各个数据集上始终能实现更高的推断准确率和更强的鲁棒性。这些发现表明,将图拓扑注意力与多源特征融合相结合可以有效地增强GRN重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e2/12540167/d99e50b91031/fgene-16-1668773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验