Suppr超能文献

基于残差自适应网络模糊推理系统的反对称分子图学习方法用于致死剂量预测问题

Anti-Symmetric Molecular Graph Learning Approach With Residual Adaptive Network Based Fuzzy Inference System for Lethal Dose Forecasting Problem.

作者信息

My Linh Nguyen Thi, Vo Tham

机构信息

Faculty of Information Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.

Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.

出版信息

J Comput Chem. 2025 Jul 15;46(19):e70176. doi: 10.1002/jcc.70176.

Abstract

In recent times, graph neural networks (GNNs) have become essential tools in molecular graph learning, due to its ability to model intricate structural dependencies. Despite their success, recent research has shown that GNNs still face significant limitations, in capturing long-range dependencies and global structural information. One of the central issues is the over-squashing problem, where information from distant nodes is excessively compressed into fixed-size node representations. This leads to poor information propagation; as a result, ultimately degrading the model's performance-particularly in complex tasks such as lethal dose forecasting, where both local chemical substructures and global molecular topology play vital roles. To overcome these limitations, we propose a novel anti-symmetric fuzzy-enhanced graph learning (ASFGL) model. Generally, our model integrates two key components: an anti-symmetric transformation module and a residual adaptive neuro-fuzzy inference system (ANFIS). The anti-symmetric transformation is designed based on stable graph ordinary differential equations (ODE); thus, ensuring a non-dissipative and stable propagation of information across multiple graph layers. This mechanism effectively mitigates the over-squashing issue, therefore, allows our model to better capture long-range dependencies in a stable manner. Complementarily, the ANFIS module employs bell-shaped membership functions to support robust and interpretable learning; as a result, enabling adaptive rule-based reasoning that refines the molecular representations learned from the graph structure. By combining these modules, the ASFGL model bridges local message passing and global structural awareness, yielding expressive molecular embeddings well-designed for toxicity prediction problems. We evaluate our proposed ASFGL model on different benchmark molecular datasets, where it consistently outperforms state-of-the-art GNN-based architectures in terms of MAE/RMSE evaluation metrics, particularly in scenarios requiring deep representation learning over large interactions. These results highlight the efficacy of integrating anti-symmetric dynamics and fuzzy inference systems in advancing molecular property prediction and overcoming foundational challenges in GNN design.

摘要

近年来,图神经网络(GNN)已成为分子图学习中的重要工具,因为它能够对复杂的结构依赖性进行建模。尽管取得了成功,但最近的研究表明,GNN在捕获长程依赖性和全局结构信息方面仍面临重大限制。核心问题之一是过度压缩问题,即来自遥远节点的信息被过度压缩成固定大小的节点表示。这导致信息传播不佳,最终降低模型性能,特别是在诸如致死剂量预测等复杂任务中,其中局部化学子结构和全局分子拓扑都起着至关重要的作用。为了克服这些限制,我们提出了一种新颖的反对称模糊增强图学习(ASFGL)模型。一般来说,我们的模型集成了两个关键组件:反对称变换模块和残差自适应神经模糊推理系统(ANFIS)。反对称变换是基于稳定的图常微分方程(ODE)设计的,从而确保信息在多个图层上的非耗散和稳定传播。这种机制有效地减轻了过度压缩问题,因此使我们的模型能够以稳定的方式更好地捕获长程依赖性。互补地,ANFIS模块采用钟形隶属函数来支持鲁棒且可解释的学习,从而实现基于规则的自适应推理,优化从图结构中学到的分子表示。通过组合这些模块,ASFGL模型架起了局部消息传递和全局结构感知之间的桥梁,产生了为毒性预测问题精心设计的富有表现力的分子嵌入。我们在不同的基准分子数据集上评估了我们提出的ASFGL模型,在MAE/RMSE评估指标方面,它始终优于基于GNN的现有最先进架构,特别是在需要对大型相互作用进行深度表示学习的场景中。这些结果突出了整合反对称动力学和模糊推理系统在推进分子性质预测和克服GNN设计中的基础挑战方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验