Suppr超能文献

基于多组学的肌萎缩侧索硬化症循环生物标志物解码及环境毒素风险研究

Multi-omics-based decoding of circulating biomarkers in amyotrophic lateral sclerosis and risks in environmental toxins.

作者信息

Xu Lei, Huang Bin, Zhou Yaqiu, Liao Xiaolin, Chen Ting, He Hongping

机构信息

The First School of Clinical Medicine, School of Nursing, Journal Editorial Office, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.

School of Pharmaceutical Sciences, Sino-Pakistan International Center on Traditional Chinese Medicine, Hunan University of Medicine, No. 492, Jin Xi Nan Road, He Cheng District, Huaihua, Hunan, 418000, China.

出版信息

BMC Pharmacol Toxicol. 2025 Nov 6;26(1):186. doi: 10.1186/s40360-025-01024-9.

Abstract

BACKGROUND

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the interplay of genetic and environmental factors, and currently, there there is a lack of effective diagnostic or therapeutic strategies available. This study aims to identify circulating biomarkers for ALS and investigate their interactions with environmental toxins.

METHODS

This research utilizes plasma proteomic genome-wide association study (GWAS) data and whole blood transcriptomic data from ALS patients to screen for potential circulating biomarkers through Mendelian randomization (MR). Subsequently, functional enrichment analysis and immune infiltration analysis were performed. An integrated machine learning approach will be used to construct a diagnostic model, with hub genes selected based on SHAP values. The model's performance will be validated using receiver operating characteristic (ROC) curves, nomogram, and decision curve analysis (DCA). Finally, reverse network toxicology will be used to explore the interaction mechanisms between hub genes and environmental toxins.

RESULTS

Based on a MR analysis of plasma proteomics, we identified 68 plasma proteins significantly associated with the risk of ALS. By integrating differentially expressed genes (DEGs) from whole blood transcriptomics (1,116 DEGs), we selected four potential circulating biomarkers: FCRL3, HTATIP2, RNASE6, and SF3B4. Functional enrichment analysis indicated that the pathogenesis of ALS is closely related to autophagy, apoptosis, the endoplasmic reticulum unfolded protein response, and the NF-κB signaling pathway. Immune infiltration analysis revealed a disruption of the immune microenvironment mediated by T cells/myeloid cells in ALS patients. Validation through 113 machine learning algorithms showed that the random forest model exhibited the best diagnostic performance (AUC = 0.786), while SHAP analysis confirmed the contribution ranking of hub biomarkers: RNASE6 > FCRL3 > HTATIP2 > SF3B4. Further validation of their diagnostic value was performed using ROC curves, nomograms, and DCA. Environmental toxins analysis revealed that substances such as benzo(a)pyrene exhibit significant neurotoxicity, and molecular docking confirmed that they can interfere with the function of hub biomarkers through strong binding (∆G < -5 kcal·mol⁻¹), suggesting potential environmental pathogenic mechanisms in ALS.

CONCLUSIONS

This study not only highlights the value of FCRL3, HTATIP2, RNASE6, and SF3B4 as potential diagnostic biomarkers and therapeutic targets for ALS but also provides new evidence for the involvement of environmental toxins, particularly benzo(a)pyrene, in the pathogenesis of ALS through gene-environment interactions.

摘要

背景

肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,其特征是遗传和环境因素相互作用,目前缺乏有效的诊断或治疗策略。本研究旨在确定ALS的循环生物标志物,并研究它们与环境毒素的相互作用。

方法

本研究利用ALS患者的血浆蛋白质组全基因组关联研究(GWAS)数据和全血转录组数据,通过孟德尔随机化(MR)筛选潜在的循环生物标志物。随后进行功能富集分析和免疫浸润分析。将使用集成机器学习方法构建诊断模型,并根据SHAP值选择枢纽基因。将使用受试者工作特征(ROC)曲线、列线图和决策曲线分析(DCA)验证模型的性能。最后,将使用反向网络毒理学探索枢纽基因与环境毒素之间的相互作用机制。

结果

基于血浆蛋白质组学的MR分析,我们确定了68种与ALS风险显著相关的血浆蛋白。通过整合全血转录组学中的差异表达基因(DEG,共1116个DEG),我们选择了四种潜在的循环生物标志物:FCRL3、HTATIP2、RNASE6和SF3B4。功能富集分析表明,ALS的发病机制与自噬、凋亡、内质网未折叠蛋白反应和NF-κB信号通路密切相关。免疫浸润分析显示,ALS患者中由T细胞/髓系细胞介导的免疫微环境受到破坏。通过113种机器学习算法进行验证表明,随机森林模型表现出最佳诊断性能(AUC = 0.786),而SHAP分析确定了枢纽生物标志物的贡献排名:RNASE6 > FCRL3 > HTATIP2 > SF3B4。使用ROC曲线、列线图和DCA对它们的诊断价值进行了进一步验证。环境毒素分析表明,苯并(a)芘等物质具有显著的神经毒性,分子对接证实它们可以通过强结合(∆G < -5 kcal·mol⁻¹)干扰枢纽生物标志物的功能,提示ALS中潜在的环境致病机制。

结论

本研究不仅突出了FCRL3、HTATIP2、RNASE6和SF3B4作为ALS潜在诊断生物标志物和治疗靶点的价值,还为环境毒素,特别是苯并(a)芘通过基因-环境相互作用参与ALS发病机制提供了新证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/294b/12590664/3ba67d2e6fed/40360_2025_1024_Fig1_HTML.jpg

相似文献

本文引用的文献

1
Disulfidptosis contributes to rotenone-induced dopaminergic neuron damage.
Neural Regen Res. 2025 Oct 30. doi: 10.4103/NRR.NRR-D-25-00024.
6
Current potential diagnostic biomarkers of amyotrophic lateral sclerosis.肌萎缩侧索硬化症的当前潜在诊断生物标志物。
Rev Neurosci. 2024 Jul 9;35(8):917-931. doi: 10.1515/revneuro-2024-0037. Print 2024 Dec 17.
7
The Current Potential Pathogenesis of Amyotrophic Lateral Sclerosis.肌萎缩侧索硬化症当前潜在的发病机制
Mol Neurobiol. 2025 Jan;62(1):221-232. doi: 10.1007/s12035-024-04269-3. Epub 2024 Jun 3.
10
Invertebrate genetic models of amyotrophic lateral sclerosis.肌萎缩侧索硬化症的无脊椎动物遗传模型。
Front Mol Neurosci. 2024 Mar 4;17:1328578. doi: 10.3389/fnmol.2024.1328578. eCollection 2024.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验