Suppr超能文献

基于机器学习的肺炎链球菌中靶向突变型PBP2x的天然抑制剂虚拟筛选及密度泛函理论表征

Machine learning-based virtual screening and density functional theory characterisation of natural inhibitors targeting mutant PBP2x in Streptococcus pneumoniae.

作者信息

Panickar Avani, Manoharan Anand, Ramaiah Sudha

机构信息

Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.

Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.

出版信息

Sci Rep. 2025 Nov 7;15(1):39164. doi: 10.1038/s41598-025-24222-1.

Abstract

Streptococcus pneumoniae (S. pneumoniae) has developed resistance to β-lactam antibiotics, largely due to mutations in penicillin-binding protein 2x (PBP2x), particularly within conserved motifs such as STMK and KSG. PBP2x mutations are frequently reported in multidrug-resistant pneumococcal strains associated with pneumonia, meningitis, and septicaemia. especially in serotypes 19A, 19F, and 23F, showing reduced susceptibility to β-lactam antibiotics. These mutations in the PBP2x disrupt antibiotic binding and enzymatic functions, highlighting the need for alternative therapeutic strategies. This study focused on five clinically relevant PBP2x mutations (T338A/G/P and K547G/T) within its active site. A library of phytocompounds was screened using a machine learning model trained to identify antibacterial compounds. Top candidates were filtered based on ADMET properties, and their electronic characteristics were assessed using HOMO-LUMO analysis and electrostatic potential mapping, through density functional theory (DFT). Glucozaluzanin C, a phytochemical derived from Elephantopus scaber, emerged as a potential candidate. Molecular docking and dynamics simulations revealed strong binding affinity and structural integrity with all PBP2x mutants, over a 100-ns timescale. RMSD, RMSF, and hydrogen bonding analysis confirmed stable interactions, suggesting Glucozaluzanin C may effectively interact with PBP2x mutants. Overall, the study highlights an effective strategy for identifying plant-derived inhibitors against β-lactam-resistant S. pneumoniae.

摘要

肺炎链球菌已对β-内酰胺类抗生素产生耐药性,这主要归因于青霉素结合蛋白2x(PBP2x)的突变,特别是在STMK和KSG等保守基序内。PBP2x突变在与肺炎、脑膜炎和败血症相关的多重耐药肺炎球菌菌株中经常被报道。尤其是在19A、19F和23F血清型中,这些菌株对β-内酰胺类抗生素的敏感性降低。PBP2x中的这些突变破坏了抗生素结合和酶功能,凸显了需要替代治疗策略。本研究聚焦于其活性位点内的五个临床相关PBP2x突变(T338A/G/P和K547G/T)。使用经过训练以识别抗菌化合物的机器学习模型筛选了一组植物化合物库。根据ADMET特性筛选出顶级候选物,并通过密度泛函理论(DFT)使用HOMO-LUMO分析和静电势映射评估其电子特性。源自地胆草的植物化学物质葡糖扎鲁宁C成为一个潜在候选物。分子对接和动力学模拟显示在超过100纳秒的时间尺度上与所有PBP2x突变体具有很强的结合亲和力和结构完整性。均方根偏差(RMSD)、均方根波动(RMSF)和氢键分析证实了稳定的相互作用,表明葡糖扎鲁宁C可能与PBP2x突变体有效相互作用。总体而言,该研究突出了一种识别针对β-内酰胺耐药肺炎链球菌的植物源性抑制剂的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e6/12595054/31b79b4d30a5/41598_2025_24222_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验