Jung Jaeho, Kim Sungho, Kim Youngbi, Nam Seoha, Kim Yeongseok, Bae Jeongyun, Han Jeong Woo, Park Soojin
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Adv Mater. 2025 Nov 27:e16395. doi: 10.1002/adma.202516395.
With the rapid shift toward sustainable energy systems, battery technologies offering high energy densities and long cycle life are critical. Lithium metal batteries (LMBs) are central to achieving high energy storage required by global sustainability efforts, yet their practical deployment faces critical limitations, including dendritic lithium deposition and challenges associated with thick cathode structures. To simultaneously overcome these issues, this research develops a polymer-functionalized carbon nanotube framework grafted with poly(2-acrylamido-2-methylpropane sulfonic acid), effectively enhancing dispersion, ionic transport, and electrode integrity. A unique cathode-anode crosstalk, arising from the sulfonic acid functional groups, stabilizes lithium interfaces and significantly mitigates dendrite formation, as revealed by computational studies. Advanced characterizations confirm improved Li⁺ kinetics, reduced interfacial resistances, and long-term cycling stability. Implementing in pouch cells, this strategy achieves a remarkable energy density of 453.2 Wh kg. This holistic approach provides a practical and scalable strategy to overcome key commercial barriers, paving the way for next-generation LMBs.
随着向可持续能源系统的快速转变,具有高能量密度和长循环寿命的电池技术至关重要。锂金属电池(LMBs)是实现全球可持续发展所需的高能量存储的核心,但它们的实际应用面临着关键限制,包括枝晶锂沉积以及与厚阴极结构相关的挑战。为了同时克服这些问题,本研究开发了一种接枝有聚(2-丙烯酰胺基-2-甲基丙烷磺酸)的聚合物功能化碳纳米管框架,有效增强了分散性、离子传输和电极完整性。计算研究表明,由磺酸官能团产生的独特的阴阳极串扰稳定了锂界面,并显著减轻了枝晶的形成。先进的表征证实了Li⁺动力学的改善、界面电阻的降低以及长期循环稳定性。在软包电池中实施这一策略,实现了453.2 Wh kg的显著能量密度。这种整体方法提供了一种实用且可扩展的策略来克服关键的商业障碍,为下一代锂金属电池铺平了道路。