Suppr超能文献

间充质干细胞外泌体作为哮喘和过敏性气道炎症的新型治疗方法

MSC-Exosomes as Novel Therapeutics in Asthma and Allergic Airway Inflammation.

作者信息

Kurt Sevval, Kimiz-Gebologlu Ilgin, Oncel Suphi S

机构信息

Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye.

出版信息

Thorac Res Pract. 2025 Dec 1;26(Suppl 1):34-36. doi: 10.4274/ThoracResPract.2025.s013.

Abstract

INTRODUCTION

Allergic respiratory diseases, including asthma and allergic rhinitis, are chronic inflammatory diseases that affect millions of people worldwide and constitute a significant health problem. These diseases are characterized by airway obstruction, mucus overproduction, eosinophilic infiltration, and airway hyperresponsiveness, which together lead to impaired respiratory function and reduced quality of life. Despite significant advances in pharmacotherapy, current treatments such as corticosteroids and bronchodilators mainly target symptom control rather than underlying immune dysregulation, often resulting in relapse or steroid resistance. Consequently, there is a growing need for novel, effective, and safe therapeutic strategies that address the root causes of airway inflammation rather than providing temporary relief. In recent years, extracellular vesicles, particularly exosomes (Exos), have emerged as key mediators of intercellular communication and as promising candidates for next-generation biologics. Exos are lipid bilayer nanosized vesicles (30-150 nm) secreted by almost all cell types, containing proteins, lipids, mRNAs, and microRNAs that reflect the physiological state of their parent cells. Their natural stability, biocompatibility, and ability to traverse biological barriers with minimal immunogenicity confer several advantages over synthetic nanocarriers. Due to their intrinsic targeting capacity and role in cell-cell signaling, Exos are increasingly explored for use in drug delivery, immune modulation, and regenerative medicine. Among various exosome sources, mesenchymal stem cell (MSC)-derived Exos have emerged as highly attractive candidates for cell-free therapies. MSCs are well-known for their immunoregulatory and regenerative capabilities, and their secreted Exos retain most of these biological functions. Importantly, MSC-Exos can interact with immune cells and modulate inflammatory signaling pathways, suggesting their potential as next-generation biotherapeutics in allergic airway diseases. The immunopathogenesis of allergic airway diseases is mainly driven by the imbalance between Th1 and Th2 immune responses, with Th2 cytokines such as interleukin (IL)-4, IL-5, and IL-13 playing central roles in eosinophilic inflammation and immunoglobulin E (IgE) production. MSC-Exos have been shown to mitigate these pathological processes through multiple mechanisms: attenuating Th2-dominated responses, downregulating pro-inflammatory cytokines, and promoting the expansion of regulatory T-cells (Tregs), which are crucial for maintaining immune tolerance. Furthermore, MSC-Exos promotes the polarization of M2 macrophages, a phenotype associated with tissue repair and resolution of inflammation. At the molecular level, Exos derived from MSCs deliver bioactive microRNAs that modulate critical signaling cascades, including NF-κB, STAT6, and MAPK pathways, key regulators of inflammation and immune activation. For instance, microRNAs such as miR-146a-5p, miR-126-3p, and miR-1470 carried by MSC-Exos have been implicated in suppressing inflammatory mediators and restoring immune balance in airway tissues. Through these mechanisms, MSC-Exos effectively attenuate airway hyperreactivity and remodeling, leading to functional improvement in preclinical asthma models. MSC-Exos exert their therapeutic effects through multiple mechanisms, including modulation of immune cell activity, suppression of Th2 cytokines, and promotion of Treg and M2 macrophage responses that collectively alleviate airway inflammation (Figure 1).

CONCLUSION

Preclinical studies using both systemic and intranasal administration of MSC-Exos have demonstrated significant therapeutic benefits. In murine models of allergic airway inflammation, treatment with MSC-Exos resulted in reduced eosinophilic infiltration, decreased serum IgE levels, and suppression of mucus hypersecretion. These effects were accompanied by enhanced secretion of IL-10 and TGF-β, two key anti-inflammatory cytokines that contribute to an immunosuppressive microenvironment. Collectively, these findings indicate that MSC-Exos can recapitulate many of the beneficial immunomodulatory effects of MSC therapy while avoiding several of the risks associated with live cell transplantation, such as immune rejection or tumorigenicity. A major advantage of MSC-Exos therapy is its cell-free and safer nature, avoiding risks associated with stem cell transplantation. Due to their nanoscale size, lipid bilayer structure, and endogenous cargo, MSC-Exos can efficiently deliver regulatory molecules to target tissues, outperforming many synthetic nanocarrier systems. Nevertheless, translating these promising preclinical findings into clinical practice requires overcoming several challenges, including standardized isolation and characterization protocols, scalable GMP-compliant production, dose optimization, and rigorous long-term safety evaluation.

FUTURE PERSPECTIVES

MSC-Exos represent an innovative and safe therapeutic platform for allergic respiratory diseases such as asthma and rhinitis. By combining the regenerative and immunomodulatory properties of MSCs with the advantages of a cell-free system, they effectively regulate Th2 cytokines and restore immune balance. Future research should prioritize the scalable production and bioengineering optimization of MSC-Exos to enhance their stability, targeting efficiency, and bioactivity. Advances in exosome surface modification, such as ligand conjugation or genetic engineering of parent MSCs, may further improve selective delivery to inflamed airway tissues. Additionally, large-scale clinical trials are necessary to confirm therapeutic efficacy, establish optimal administration routes (e.g., intranasal vs. systemic), and ensure long-term safety. Beyond allergic airway diseases, the versatility of MSC-Exos may extend to other inflammatory and fibrotic lung conditions, including chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. As understanding of exosome biology deepens and bioengineering techniques advance, MSC-Exos are poised to become a cornerstone of next-generation immunomodulatory and regenerative therapies, bridging molecular biology, nanotechnology, and clinical immunology for transformative outcomes in respiratory medicine.

摘要

引言

过敏性呼吸道疾病,包括哮喘和过敏性鼻炎,是慢性炎症性疾病,影响着全球数百万人,构成了一个重大的健康问题。这些疾病的特征是气道阻塞、黏液过度产生、嗜酸性粒细胞浸润和气道高反应性,这些共同导致呼吸功能受损和生活质量下降。尽管药物治疗取得了显著进展,但目前的治疗方法,如皮质类固醇和支气管扩张剂,主要针对症状控制,而非潜在的免疫失调,常常导致复发或类固醇耐药。因此,越来越需要新的、有效且安全的治疗策略来解决气道炎症的根本原因,而非仅仅提供临时缓解。近年来,细胞外囊泡,特别是外泌体(Exos),已成为细胞间通讯的关键介质,并成为下一代生物制剂的有希望的候选者。外泌体是几乎所有细胞类型分泌的脂质双层纳米大小的囊泡(30 - 150纳米),包含反映其亲本细胞生理状态的蛋白质、脂质、mRNA和微小RNA。它们的天然稳定性、生物相容性以及以最小免疫原性穿越生物屏障的能力赋予了它们相对于合成纳米载体的几个优势。由于其内在的靶向能力和在细胞间信号传导中的作用,外泌体越来越多地被探索用于药物递送、免疫调节和再生医学。在各种外泌体来源中,间充质干细胞(MSC)衍生的外泌体已成为无细胞疗法极具吸引力的候选者。间充质干细胞以其免疫调节和再生能力而闻名,其分泌的外泌体保留了这些大部分生物学功能。重要的是,MSC - Exos可以与免疫细胞相互作用并调节炎症信号通路,表明它们作为过敏性气道疾病下一代生物治疗剂的潜力。过敏性气道疾病的免疫发病机制主要由Th1和Th2免疫反应之间的失衡驱动,Th2细胞因子如白细胞介素(IL)-4、IL -5和IL -13在嗜酸性粒细胞炎症和免疫球蛋白E(IgE)产生中起核心作用。MSC - Exos已被证明通过多种机制减轻这些病理过程:减弱以Th2为主的反应、下调促炎细胞因子以及促进调节性T细胞(Tregs)的扩增,Tregs对于维持免疫耐受至关重要。此外,MSC - Exos促进M2巨噬细胞的极化,M2巨噬细胞是一种与组织修复和炎症消退相关的表型。在分子水平上,源自间充质干细胞的外泌体递送生物活性微小RNA,调节关键信号级联反应,包括NF -κB、STAT6和MAPK途径,这些是炎症和免疫激活的关键调节因子。例如,MSC - Exos携带的微小RNA如miR - 146a - 5p、miR - 126 - 3p和miR - 1470参与抑制炎症介质并恢复气道组织中的免疫平衡。通过这些机制,MSC - Exos有效减轻气道高反应性和重塑,导致临床前哮喘模型中的功能改善。MSC - Exos通过多种机制发挥其治疗作用,包括调节免疫细胞活性、抑制Th2细胞因子以及促进Treg和M2巨噬细胞反应,这些共同减轻气道炎症(图1)。

结论

使用全身和鼻内给予MSC - Exos的临床前研究已证明具有显著的治疗益处。在过敏性气道炎症的小鼠模型中,用MSC - Exos治疗导致嗜酸性粒细胞浸润减少、血清IgE水平降低以及黏液分泌过多的抑制。这些作用伴随着IL -10和TGF -β这两种关键抗炎细胞因子分泌的增加,这两种细胞因子有助于形成免疫抑制微环境。总体而言,这些发现表明MSC - Exos可以概括MSC疗法的许多有益免疫调节作用,同时避免与活细胞移植相关的一些风险,如免疫排斥或致瘤性。MSC - Exos疗法的一个主要优点是其无细胞且更安全的性质,避免了与干细胞移植相关的风险。由于其纳米级尺寸、脂质双层结构和内源性货物,MSC - Exos可以有效地将调节分子递送至靶组织,优于许多合成纳米载体系统。然而,将这些有前景的临床前发现转化为临床实践需要克服几个挑战,包括标准化的分离和表征方案、符合GMP的可扩展生产、剂量优化以及严格的长期安全性评估。

未来展望

MSC - Exos代表了一种用于哮喘和鼻炎等过敏性呼吸道疾病的创新且安全的治疗平台。通过将间充质干细胞的再生和免疫调节特性与无细胞系统的优势相结合,它们有效地调节Th2细胞因子并恢复免疫平衡。未来的研究应优先考虑MSC - Exos的可扩展生产和生物工程优化,以增强其稳定性、靶向效率和生物活性。外泌体表面修饰的进展,如配体偶联或亲本间充质干细胞的基因工程,可能进一步改善对炎症气道组织的选择性递送。此外,大规模临床试验对于确认治疗效果、确定最佳给药途径(如鼻内给药与全身给药)以及确保长期安全性是必要的。除了过敏性气道疾病,MSC - Exos的多功能性可能扩展到其他炎症性和纤维化肺部疾病,包括慢性阻塞性肺疾病和特发性肺纤维化。随着对外泌体生物学的理解加深和生物工程技术的进步,MSC - Exos有望成为下一代免疫调节和再生疗法的基石,将分子生物学、纳米技术和临床免疫学联系起来,为呼吸医学带来变革性成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f09/12673181/f6888c416fdf/TurkThoracJ-26-1-34-figure-1.jpg

相似文献

本文引用的文献

7
The Potential of Exosomes in Allergy Immunotherapy.外泌体在过敏免疫治疗中的潜力
Vaccines (Basel). 2022 Jan 17;10(1):133. doi: 10.3390/vaccines10010133.
8
Exosomes in Allergic Airway Diseases.过敏性气道疾病中的细胞外囊泡。
Curr Allergy Asthma Rep. 2019 Mar 22;19(5):26. doi: 10.1007/s11882-019-0857-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验