Rash J E, Ellisman M H
J Cell Biol. 1974 Nov;63(2 Pt 1):567-86. doi: 10.1083/jcb.63.2.567.
The neuromuscular junctions and nonjunctional sarcolemmas of mammalian skeletal muscle fibers were studied by conventional thin-section electron microscopy and freeze-fracture techniques. A modified acetylcholinesterase staining procedure that is compatible with light microscopy, conventional thin-section electron microscopy, and freeze-fracture techniques is described. Freeze-fracture replicas were utilized to visualize the internal macromolecular architecture of the nerve terminal membrane, the chemically excitable neuromuscular junction postsynaptic folds, and the electrically excitable nonjunctional sarcolemma. The nerve terminal membrane is characterized by two parallel rows of 100-110-A particles which may be associated with synpatic vesicle fusion and release. On the postsynpatic folds, irregular rows of densely packed 110-140-A particles were observed and evidence is assembled which indicates that these large transmembrane macromolecules may represent the morphological correlate for functional acetylcholine receptor activity in mammalian motor endplates. Differences in the size and distribution of particles in mammalian as compared with amphibian and fish postsynaptic junctional membranes are correlated with current biochemical and electron micrograph autoradiographic data. Orthogonal arrays of 60-A particles were observed in the split postsynaptic sarcolemmas of many diaphragm myofibers. On the basis of differences in the number and distribution of these "square" arrays within the sarcolemmas, two classes of fibers were identified in the diaphragm. Subsequent confirmation of the fiber types as fast- and slow-twitch fibers (Ellisman et al. 1974. J. Cell Biol.63[2, Pt. 2]:93 a. [Abstr.]) may indicate a possible role for the square arrays in the electrogenic mechanism. Experiments in progress involving specific labeling techniques are expected to permit positive identification of many of these intriguing transmembrane macromolecules.
采用传统的超薄切片电子显微镜技术和冷冻蚀刻技术,对哺乳动物骨骼肌纤维的神经肌肉接头和非接头肌膜进行了研究。本文描述了一种改良的乙酰胆碱酯酶染色方法,该方法适用于光学显微镜、传统超薄切片电子显微镜和冷冻蚀刻技术。利用冷冻蚀刻复制品来观察神经终末膜的内部大分子结构、化学性可兴奋的神经肌肉接头突触后皱襞以及电可兴奋的非接头肌膜。神经终末膜的特征是有两排平行的100 - 110埃颗粒,它们可能与突触小泡的融合和释放有关。在突触后皱襞上,观察到不规则排列的紧密堆积的110 - 140埃颗粒,并收集了证据表明这些大的跨膜大分子可能代表哺乳动物运动终板中功能性乙酰胆碱受体活性的形态学相关物。与两栖类和鱼类突触后连接膜相比,哺乳动物颗粒的大小和分布差异与当前的生化和电子显微镜放射自显影数据相关。在许多膈肌肌纤维的分裂突触后肌膜中观察到60埃颗粒的正交排列。根据这些“方形”排列在肌膜内数量和分布的差异,在膈肌中鉴定出两类纤维。随后将纤维类型确认为快肌纤维和慢肌纤维(埃利斯曼等人,1974年。《细胞生物学杂志》63[2,第2部分]:93a。[摘要]),这可能表明方形排列在电发生机制中可能起作用。正在进行的涉及特定标记技术的实验有望对许多这些有趣的跨膜大分子进行阳性鉴定。