Zhang Jing, Chen Long, Deng Qianyi, Mo Xueying, Wu Fangfang
College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Bioresour Technol. 2025 Dec 20;443:133841. doi: 10.1016/j.biortech.2025.133841.
Lignin, an underutilized byproduct of the paper industry, was transformed into highly efficient biochar for malachite green (MG) removal (∼2900 mg/g), achieving dual goals of waste valorization and pollution control. Mechanistic studies reveal that the outstanding performance arises from the contributions of biochar skeleton (23.3 %-25.8 %), biochar dissolved matter (BDM) (43.3 %-46.0 %), and their synergistic interaction (28.2 %-33.4 %). Low-temperature biochar showed superior synergistic effects. This synergy enables a coupled process of electron transfer-driven degradation and adsorption. The graphitized biochar skeleton acts as an electron donor, while BDM components facilitate electron transfer to O, generating •O for MG degradation. Furthermore, functional groups on biochar skeleton provide adsorption sites via multiple interactions. This study presents a cost-effective MG removal strategy and, for the first time, elucidates BDM's role as an electron shuttle, advancing biochar application and lignin valorization in wastewater treatment.
木质素是造纸工业中一种未得到充分利用的副产品,被转化为用于去除孔雀石绿(MG)的高效生物炭(约2900毫克/克),实现了废物资源化和污染控制的双重目标。机理研究表明,其卓越性能源于生物炭骨架(23.3%-25.8%)、生物炭溶解物(BDM)(43.3%-46.0%)及其协同相互作用(28.2%-33.4%)的贡献。低温生物炭表现出优异的协同效应。这种协同作用实现了电子转移驱动的降解和吸附的耦合过程。石墨化的生物炭骨架作为电子供体,而BDM成分促进电子向O转移,生成用于降解MG的•O。此外,生物炭骨架上的官能团通过多种相互作用提供吸附位点。本研究提出了一种具有成本效益的MG去除策略,并首次阐明了BDM作为电子穿梭体的作用,推动了生物炭在废水处理中的应用和木质素的资源化利用。