Suppr超能文献

负载于废生物质炭上的超小铜基金属有机框架量子点用于增强新兴污染物的去除:协同作用和机理见解。

Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: Synergistic effect and mechanistic insight.

机构信息

Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.

Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.

出版信息

J Environ Manage. 2024 Aug;366:121802. doi: 10.1016/j.jenvman.2024.121802. Epub 2024 Jul 13.

Abstract

This study proposes a novel one-pot hydrothermal impregnation strategy for surface decoration of waste derived pisum sativum biochar with zero‒dimensional Cu‒MOF Quantum dots (PBC‒HK), with an average particle size of 5.67 nm, for synergistic removal of an emerging sulfur containing drug pantoprazole (PTZ) and Basic Blue 26 (VB) dye within 80 min and 50 min of visible-light exposure, respectively. The designed Integrated Photocatalytic Adsorbent (IPA) presented an enhanced PTZ removal efficiency of 95.23% with a catalyst loading of 0.24 g/L and initial PTZ conc. 30 mg/L at pH 7, within 80 min via synergistic adsorption and photodegradation under visible-light exposure. While, on the other hand, 96.31% VB removal efficiency was obtained in 50 min with a catalyst dosage of 0.20 g/L, initial VB conc. 60 mg/L at pH 7 under similar irradiation conditions. An in-depth analysis of the synergistic adsorption and photocatalysis mechanism resulting in the shortened time for the removal of contaminants in the synergistic integrated model has been performed by outlining the various advantageous attributes of this strategy. The first-order degradation rate constant for PTZ was found to be 0.04846 min and 0.04370 min for PTZ and VB, respectively. Adsorption of contaminant molecules on the biochar (PS‒BC) surface can facilitate photodegradation by accelerating the kinetics, and photodegradation promotes regeneration of adsorption sites, contributing to an overall reduction in operation time for removal of contaminants. Besides enhancing the adsorption of targeted pollutants, the carbon matrix of IPAs serves as a surface for adsorption of intermediates of degradation, thereby minimizing the risk of secondary pollution. The photogenerated holes present in the VB is responsible for the generation of •OH radicals. While, the photogenerated electrons present in the CB are captured by Cu of the MOF metal center, reducing it to Cu, which is subsequently oxidized to produce additional •OH species in the aqueous medium. This process leads to effective charge separation of the photogenerated charge carriers and minimizes the probability of charge recombination as evident from photoluminescence (PL) analysis. Meanwhile, PL studies, EPR and radical trapping experiments indicate the predominant role of •OH radicals in the removal mechanism of PTZ and VB. The investigation of the degradation reaction intermediates was confirmed by HR‒LCMS, on the basis of which the plausible degradation pathway was elucidated in detail. Moreover, effects of pH, inorganic salts, other organic compounds and humic acid concentration have been investigated in detail. The environmental impact of the proposed method was comprehensively evaluated by ICP-OES analysis and TOC and COD removal studies. Furthermore, the economic feasibility and the cost-effectiveness of the catalyst was assessed to address the potential for large scale commercialization. Notably, this research not only demonstrates a rational design strategy for the utilization of solid waste into treasure via the fabrication of IPAs based on MOF Quantum dots (QDs) and waste-derived biochar, but also provides a practical solution for real wastewater treatment systems for broader industrial applications.

摘要

本研究提出了一种新颖的一锅水热浸渍策略,用于在豌豆生物炭(PBC)表面进行零维 Cu-MOF 量子点(PBC-HK)的表面装饰,其平均粒径为 5.67nm,用于协同去除新兴的含硫药物泮托拉唑(PTZ)和碱性蓝 26(VB)染料,在可见光照射下分别在 80 分钟和 50 分钟内完成。设计的集成光催化剂吸附剂(IPA)在 80 分钟内以 0.24g/L 的催化剂负载量和初始 PTZ 浓度 30mg/L、pH 值为 7 的条件下,通过可见光照射下的协同吸附和光降解,表现出 95.23%的 PTZ 去除效率。而在相同的照射条件下,当催化剂用量为 0.20g/L,初始 VB 浓度为 60mg/L 时,VB 的去除效率为 96.31%,在 50 分钟内即可完成。通过概述该策略的各种有利特性,对协同吸附和光催化机制导致协同集成模型中污染物去除时间缩短的协同吸附和光催化机制进行了深入分析。PTZ 的一级降解速率常数分别为 0.04846min 和 0.04370min。污染物分子在生物炭(PS-BC)表面的吸附可以通过加速动力学来促进光降解,光降解促进吸附位点的再生,从而总体上减少了去除污染物所需的操作时间。除了增强对目标污染物的吸附外,IPA 的碳基质还可以作为降解中间产物的吸附表面,从而最大限度地降低二次污染的风险。VB 中的光生空穴负责生成•OH 自由基。而在 CB 中的光生电子被 MOF 金属中心的 Cu 捕获,将其还原为 Cu,随后在水溶液中被氧化生成更多的•OH 物种。该过程导致光生载流子的有效电荷分离,并最小化光致发光(PL)分析表明的电荷复合的可能性。同时,PL 研究、EPR 和自由基捕获实验表明,•OH 自由基在 PTZ 和 VB 的去除机制中起主要作用。通过高分辨 LCMS 对降解反应中间体进行了确认,在此基础上详细阐述了其可能的降解途径。此外,还详细研究了 pH 值、无机盐、其他有机化合物和腐殖酸浓度的影响。通过 ICP-OES 分析和 TOC 和 COD 去除研究,全面评估了所提出方法的环境影响。此外,还评估了催化剂的经济可行性和成本效益,以解决其在大规模商业化方面的潜力。值得注意的是,该研究不仅展示了一种通过基于 MOF 量子点(QDs)和废生物质制备的 IPA 对固体废物进行合理设计的策略,而且还为更广泛的工业应用提供了实际的废水处理系统解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验