Suppr超能文献

5-酮-D-果糖:在产酮醋杆菌同化D-果糖过程中的形成与利用

5-Keto-D-fructose: formation and utilization in the course of D-fructose as similation by Gluconabacter cerinus.

作者信息

Mowshowitz S, Avigad G, Englard S

出版信息

J Bacteriol. 1974 Jun;118(3):1051-8. doi: 10.1128/jb.118.3.1051-1058.1974.

Abstract

The accumulation of 5-keto-d-fructose (5KF) by Gluconobacter cerinus grown on d-fructose in unbuffered medium was shown to be optimal at pH 4.0 after cell growth ceased. During the exponential phase of growth or at neutral pH after the onset of the stationary phase, 5KF production continued but did not accumulate because of its rapid reutilization by reduction to d-fructose. The extent of isotope incorporation into C5 of ribonucleic acid ribose when cells were grown in the presence of specifically labeled d-glucose and d-fructose clearly indicated that (i) the hexose monophosphate oxidative pathway is the predominant metabolic route for carbohydrate assimilation and (ii) extensive randomization of label between C1 and C6 of d-fructose occurred prior to its conversion into pentose. It is suggested that the cyclic oxidation and reduction through the symmetrical 5KF molecule, which accounts for the observed randomization of isotope in d-fructose, provides the cells with an effective mechanism for the regeneration of nicotinamide adenine dinucleotide phosphate during the period of intensive growth.

摘要

在无缓冲培养基中以d-果糖为碳源生长的 cerinus 葡萄糖杆菌积累5-酮-d-果糖(5KF)的情况表明,在细胞生长停止后,pH 4.0时积累量最佳。在生长指数期或稳定期开始后的中性pH条件下,5KF持续产生,但由于其迅速还原为d-果糖而未积累。当细胞在特定标记的d-葡萄糖和d-果糖存在下生长时,同位素掺入核糖核酸核糖C5的程度清楚地表明:(i)己糖单磷酸氧化途径是碳水化合物同化的主要代谢途径;(ii)d-果糖的C1和C6之间在转化为戊糖之前发生了广泛的标记随机化。有人认为,通过对称的5KF分子进行的循环氧化和还原,解释了d-果糖中观察到的同位素随机化现象,为细胞在快速生长期间提供了一种有效的烟酰胺腺嘌呤二核苷酸磷酸再生机制。

相似文献

1
2
3
Solution structure of 5-keto-D-fructose: relevance to the specificity of hexose kinases.
Biochemistry. 1982 Jan 5;21(1):75-81. doi: 10.1021/bi00530a014.
4
Transport and catabolism of D-fructose by Spirillum itersomii.
J Bacteriol. 1974 Jan;117(1):144-50. doi: 10.1128/jb.117.1.144-150.1974.
5
New developments in oxidative fermentation.
Appl Microbiol Biotechnol. 2003 Feb;60(6):643-53. doi: 10.1007/s00253-002-1155-9. Epub 2002 Dec 18.
8
5-Keto-D-fructose production from sugar alcohol by isolated wild strain CHM 43.
Biosci Biotechnol Biochem. 2020 Aug;84(8):1745-1747. doi: 10.1080/09168451.2020.1767500. Epub 2020 May 19.
9
POLYOL METABOLISM IN THE BASIDIOMYCETE SCHIZOPHYLLUM COMMUNE.
J Bacteriol. 1965 Apr;89(4):954-9. doi: 10.1128/jb.89.4.954-959.1965.
10
The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis.
Eur J Biochem. 1988 Apr 5;173(1):203-9. doi: 10.1111/j.1432-1033.1988.tb13985.x.

引用本文的文献

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
OXIDATION OF ALIPHATIC GLYCOLS BY ACETIC ACID BACTERIA.
Bacteriol Rev. 1964 Jun;28(2):164-80.
7
RATE LIMITING EFFECTS OF PYRIDINE NUCLEOTIDES ON CARBOHYDRATE CATABOLIC PATHWAYS OF MICROORGANISMS.
Biochem Biophys Res Commun. 1963 Aug 1;12:274-9. doi: 10.1016/0006-291x(63)90295-x.
9
The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and Acetobacter melanogenum.
Biochim Biophys Acta. 1959 Jul;34:171-83. doi: 10.1016/0006-3002(59)90245-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验