Suppr超能文献

旋螺菌对D-果糖的转运与分解代谢

Transport and catabolism of D-fructose by Spirillum itersomii.

作者信息

Hylemon P B, Krieg N R, Phibbs P V

出版信息

J Bacteriol. 1974 Jan;117(1):144-50. doi: 10.1128/jb.117.1.144-150.1974.

Abstract

Spirillum itersonii ATCC 12639 utilized d-fructose but neither d-glucose nor d-gluconate as a sole source of carbon and energy. The substrate saturation kinetics for d-fructose and d-glucose uptake by whole cells indicated the presence of a carrier-mediated transport system for d-fructose but not for d-glucose. The d-fructose uptake activity was induced (10- to 12-fold increase) during growth on d-fructose-Casamino Acids (CA) or d-glucose-CA medium, but not CA alone. d-Fructose uptake activity was stimulated by Na(+) or Li(+), but was inhibited by KCN, NaN(3), 2,4-dinitrophenol, and p-chloromercuribenzoate. High specific activities of glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase were detected in extracts of cells cultured on d-fructose-CA medium. These enzymatic activities were undetectable in extracts of cells grown in CA or succinate-CA medium. No decrease in the maximally induced specific activities of these enzymes occurred after the addition of succinate to cells during exponential growth on d-fructose-CA. Fructose 1,6-diphosphate aldolase and glucose-6-phosphate isomerase specific activities were approximately the same irrespective of cultural conditions. These results indicated that d-glucose was not utilized by cells of S. itersonii because this bacterium was impermeable to this hexose.

摘要

迭代螺菌(Spirillum itersonii)ATCC 12639利用d-果糖作为唯一碳源和能源,但不利用d-葡萄糖或d-葡萄糖酸盐。全细胞对d-果糖和d-葡萄糖摄取的底物饱和动力学表明,存在一种载体介导的d-果糖转运系统,而不存在d-葡萄糖的转运系统。在以d-果糖-酪蛋白氨基酸(CA)或d-葡萄糖-CA培养基生长期间,d-果糖摄取活性被诱导(增加10至12倍),但单独在CA培养基上生长时则不会。d-果糖摄取活性受到Na(+)或Li(+)的刺激,但受到KCN、NaN(3)、2,4-二硝基苯酚和对氯汞苯甲酸的抑制。在以d-果糖-CA培养基培养的细胞提取物中检测到葡萄糖激酶、葡萄糖-6-磷酸脱氢酶、6-磷酸葡萄糖酸脱水酶和2-酮-3-脱氧-6-磷酸葡萄糖酸醛缩酶的高比活性。在CA或琥珀酸盐-CA培养基中生长的细胞提取物中未检测到这些酶活性。在d-果糖-CA培养基上指数生长期间向细胞中添加琥珀酸盐后,这些酶的最大诱导比活性没有降低。无论培养条件如何,果糖1,6-二磷酸醛缩酶和葡萄糖-6-磷酸异构酶的比活性大致相同。这些结果表明,迭代螺菌的细胞不利用d-葡萄糖,因为这种细菌对这种己糖是不可渗透的。

相似文献

1
Transport and catabolism of D-fructose by Spirillum itersomii.
J Bacteriol. 1974 Jan;117(1):144-50. doi: 10.1128/jb.117.1.144-150.1974.
3
Transport of glucose, gluconate, and methyl alpha-D-glucoside by Pseudomonas aeruginosa.
J Bacteriol. 1974 Mar;117(3):1261-9. doi: 10.1128/jb.117.3.1261-1269.1974.
4
Enzymes of glucose catabolism in cell-free extracts of non-fermentative marine eubacteria.
Can J Microbiol. 1973 Feb;19(2):302-4. doi: 10.1139/m73-048.
5
Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase.
J Bacteriol. 1967 Apr;93(4):1337-45. doi: 10.1128/jb.93.4.1337-1345.1967.
6
[Enzymes of fructose metabolism. Activity and distribution in the rat liver].
Hoppe Seylers Z Physiol Chem. 1967 Jul;348(7):855-63.
7
Sugar catabolism in Aquaspirillum gracile.
J Bacteriol. 1974 Sep;119(3):691-7. doi: 10.1128/jb.119.3.691-697.1974.
8
Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans.
J Bacteriol. 1971 Oct;108(1):334-42. doi: 10.1128/jb.108.1.334-342.1971.
9
Carbohydrate catabolism of selected strains in the genus Agrobacterium.
Appl Microbiol. 1975 Nov;30(5):731-7. doi: 10.1128/am.30.5.731-737.1975.
10
Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media.
Biochim Biophys Acta. 1969 Dec 30;192(3):395-401. doi: 10.1016/0304-4165(69)90388-2.

引用本文的文献

1
The Microaerophile SPirillum volutans: Cultivation on Complex Liquid and Solid Media.
Appl Environ Microbiol. 1982 Feb;43(2):469-77. doi: 10.1128/aem.43.2.469-477.1982.
2
Identification of a phosphoenolpyruvate:fructose 1-phosphotransferase system in Azospirillum brasilense.
J Bacteriol. 1984 Dec;160(3):1204-6. doi: 10.1128/jb.160.3.1204-1206.1984.
3
Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa.
J Bacteriol. 1983 Dec;156(3):1123-9. doi: 10.1128/jb.156.3.1123-1129.1983.
5
Sugar catabolism in Aquaspirillum gracile.
J Bacteriol. 1974 Sep;119(3):691-7. doi: 10.1128/jb.119.3.691-697.1974.
6
Pyruvate carboxylase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa.
J Bacteriol. 1974 Jun;118(3):999-1009. doi: 10.1128/jb.118.3.999-1009.1974.
7
Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO.
J Bacteriol. 1985 Jun;162(3):872-80. doi: 10.1128/jb.162.3.872-880.1985.
8
Cloning of genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and Pseudomonas putida.
J Bacteriol. 1985 Jun;162(3):865-71. doi: 10.1128/jb.162.3.865-871.1985.
10
Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO.
J Bacteriol. 1991 Aug;173(15):4700-6. doi: 10.1128/jb.173.15.4700-4706.1991.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验